TOPICS
Search

Ahlfors Five Island Theorem


Let f(z) be a transcendental meromorphic function, and let D_1, D_2, ..., D_5 be five simply connected domains in C with disjoint closures (Ahlfors 1932). Then there exists j in {1,2,...,5} and, for any R>0, a simply connected domain G subset {z in C:|z|>R} such that f(z) is a conformal mapping of G onto D_j. If f(z) has only finitely many poles, then "five" may be replaced by "three" (Ahlfors 1933).


See also

Meromorphic Function, Transcendental Function

Explore with Wolfram|Alpha

References

Ahlfors, L. "Sur les fonctions inverses des fonctions méromorphes." Comptes Rendus Acad. Sci. Paris 194, 1145-1147, 1932. Reprinted in Lars Valerian Ahlfors: Collected Papers Volume 1, 1929-1955 (Ed. R. M. Shortt). Boston, MA: Birkhäuser, 149-151, 1982.Ahlfors, L. "Über die Kreise die von einer Riemannschen Fläche schlicht überdeckt werden." Comm. Math. Helv. 5, 28-38, 1933. Reprinted in Lars Valerian Ahlfors: Collected Papers Volume 1, 1929-1955 (Ed. R. M. Shortt). Boston, MA: Birkhäuser, 163-173, 1982.Bergweiler, W. "Iteration of Meromorphic Functions." Bull. Amer. Math. Soc. (N. S.) 29, 151-188, 1993.Hayman, W. K. Meromorphic Functions. Oxford, England: Oxford University Press, 1964.Nevanlinna, R. Analytic Functions. New York: Springer-Verlag, 1970.

Referenced on Wolfram|Alpha

Ahlfors Five Island Theorem

Cite this as:

Weisstein, Eric W. "Ahlfors Five Island Theorem." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/AhlforsFiveIslandTheorem.html

Subject classifications