TOPICS
Search

Search Results for ""


81 - 90 of 820 for Confluent Hypergeometric Functionofthe F...Search Results
The polynomials M_k(x;delta,eta) which form the Sheffer sequence for g(t) = {[1+deltaf(t)]^2+[f(t)]^2}^(eta/2) (1) f(t) = tan(t/(1+deltat)) (2) which have generating function ...
An integral equation of the form f(x)=int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved for.
An integral equation of the form phi(x)=f(x)+int_a^xK(x,t)phi(t)dt, where K(x,t) is the integral kernel, f(x) is a specified function, and phi(t) is the function to be solved ...
For R[n]>-1 and R[z]>0, Pi(z,n) = n^zint_0^1(1-x)^nx^(z-1)dx (1) = (n!)/((z)_(n+1))n^z (2) = B(z,n+1), (3) where (z)_n is the Pochhammer symbol and B(p,q) is the beta ...
Q_n^((alpha,beta))(x)=2^(-n-1)(x-1)^(-alpha)(x+1)^(-beta) ×int_(-1)^1(1-t)^(n+alpha)(1+t)^(n+beta)(x-t)^(-n-1)dt. In the exceptional case n=0, alpha+beta+1=0, a nonconstant ...
The Knuth-Bendix completion algorithm attempts to transform a finite set of identities into a finitely terminating, confluent term rewriting system whose reductions preserve ...
Let generalized hypergeometric function _pF_q[alpha_1,alpha_2,...,alpha_p; beta_1,beta_2,...,beta_q;z] (1) have p=q+1. Then the generalized hypergeometric function is said to ...
Kummer's first formula is (1) where _2F_1(a,b;c;z) is the hypergeometric function with m!=-1/2, -1, -3/2, ..., and Gamma(z) is the gamma function. The identity can be written ...
For R[z]>0, where J_nu(z) is a Bessel function of the first kind.
where R[mu+nu-lambda+1]>0, R[lambda]>-1, 0<a<b, J_nu(x) is a Bessel function of the first kind, Gamma(x) is the gamma function, and _2F_1(a,b;c;x) is a hypergeometric ...
1 ... 6|7|8|9|10|11|12 ... 82 Previous Next

...