Search Results for ""
41 - 50 of 820 for Confluent Hypergeometric Functionofthe F...Search Results

A Bessel function of the second kind Y_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 703, eqn. 6.649.1), sometimes also denoted N_n(x) (e.g, Gradshteyn and Ryzhik 2000, p. 657, ...
A function I_n(x) which is one of the solutions to the modified Bessel differential equation and is closely related to the Bessel function of the first kind J_n(x). The above ...
A modified spherical Bessel function of the first kind (Abramowitz and Stegun 1972), also called a "spherical modified Bessel function of the first kind" (Arfken 1985), is ...
The first solution to Lamé's differential equation, denoted E_n^m(x) for m=1, ..., 2n+1. They are also called Lamé functions. The product of two ellipsoidal harmonics of the ...
Let the elliptic modulus k satisfy 0<k^2<1. (This may also be written in terms of the parameter m=k^2 or modular angle alpha=sin^(-1)k.) The incomplete elliptic integral of ...
A Sierpiński number of the first kind is a number of the form S_n=n^n+1. The first few are 2, 5, 28, 257, 3126, 46657, 823544, 16777217, ... (OEIS A014566). Sierpiński proved ...
Polynomials b_n(x) which form a Sheffer sequence with g(t) = t/(e^t-1) (1) f(t) = e^t-1, (2) giving generating function sum_(k=0)^infty(b_k(x))/(k!)t^k=(t(t+1)^x)/(ln(1+t)). ...
Let 0<k^2<1. The incomplete elliptic integral of the third kind is then defined as Pi(n;phi,k) = int_0^phi(dtheta)/((1-nsin^2theta)sqrt(1-k^2sin^2theta)) (1) = ...
An integral equation of the form phi(x)=f(x)+lambdaint_(-infty)^inftyK(x,t)phi(t)dt (1) phi(x)=1/(sqrt(2pi))int_(-infty)^infty(F(t)e^(-ixt)dt)/(1-sqrt(2pi)lambdaK(t)). (2) ...
Multiple series generalizations of basic hypergeometric series over the unitary groups U(n+1). The fundamental theorem of U(n) series takes c_1, ..., c_n and x_1, ..., x_n as ...

...