TOPICS
Search

Search Results for ""


6101 - 6110 of 13135 for Computational GeometrySearch Results
For all integers n and |x|<a, lambda_n^((t))(x+a)=sum_(k=0)^infty|_n; k]lambda_(n-k)^((t))(a)x^k, where lambda_n^((t)) is the harmonic logarithm and |_n; k] is a Roman ...
A branch point whose neighborhood of values wrap around an infinite number of times as their complex arguments are varied. The point z=0 under the function lnz is therefore a ...
The logarithmic derivative of a function f is defined as the derivative of the logarithm of a function. For example, the digamma function is defined as the logarithmic ...
The logarithmic distribution is a continuous distribution for a variate X in [a,b] with probability function P(x)=(lnx)/(b(lnb-1)-a(lna-1)) (1) and distribution function ...
A coefficient of the Maclaurin series of 1/(ln(1+x))=1/x+1/2-1/(12)x+1/(24)x^2-(19)/(720)x^3+3/(160)x^4+... (OEIS A002206 and A002207), the multiplicative inverse of the ...
A logarithmic singularity is a singularity of an analytic function whose main z-dependent term is of order O(lnz). An example is the singularity of the Bessel function of the ...
The inverse transform sum_(n=1)^infty(a_nx^n)/(n!)=ln(1+sum_(n=1)^infty(b_nx^n)/(n!)) of the exponential transform ...
A function f(x) is logarithmically concave on the interval [a,b] if f>0 and lnf(x) is concave on [a,b]. The definition can also be extended to R^k->(0,infty) functions ...
A polynomial is called logarithmically concave (or log-concave) if the sequence of its coefficients is logarithmically concave. If P(x) is log-convex and Q(x) is unimodal, ...
A function f(x) is logarithmically convex on the interval [a,b] if f>0 and lnf(x) is convex on [a,b]. If f(x) and g(x) are logarithmically convex on the interval [a,b], then ...
1 ... 608|609|610|611|612|613|614 ... 1314 Previous Next

...