Search Results for ""
371 - 380 of 13135 for Computational GeometrySearch Results

Define S_n(x) = sum_(k=1)^(infty)(sin(kx))/(k^n) (1) C_n(x) = sum_(k=1)^(infty)(cos(kx))/(k^n), (2) then the Clausen functions are defined by ...
Let V be an n-dimensional linear space over a field K, and let Q be a quadratic form on V. A Clifford algebra is then defined over T(V)/I(Q), where T(V) is the tensor algebra ...
A method of determining the maximum number of positive and negative real roots of a polynomial. For positive roots, start with the sign of the coefficient of the lowest (or ...
The elliptic modulus k is a quantity used in elliptic integrals and elliptic functions defined to be k=sqrt(m), where m is the parameter. An elliptic integral is written ...
A Fermat prime is a Fermat number F_n=2^(2^n)+1 that is prime. Fermat primes are therefore near-square primes. Fermat conjectured in 1650 that every Fermat number is prime ...
An adaptive Gaussian quadrature method for numerical integration in which error is estimation based on evaluation at special points known as "Kronrod points." By suitably ...
A Gaussian sum is a sum of the form S(p,q)=sum_(r=0)^(q-1)e^(-piir^2p/q), (1) where p and q are relatively prime integers. The symbol phi is sometimes used instead of S. ...
The Gram series is an approximation to the prime counting function given by G(x)=1+sum_(k=1)^infty((lnx)^k)/(kk!zeta(k+1)), (1) where zeta(z) is the Riemann zeta function ...
The Gregory series is a pi formula found by Gregory and Leibniz and obtained by plugging x=1 into the Leibniz series, pi/4=sum_(k=1)^infty((-1)^(k+1))/(2k-1)=1-1/3+1/5-... ...
Hadjicostas's formula is a generalization of the unit square double integral gamma=int_0^1int_0^1(x-1)/((1-xy)ln(xy))dxdy (1) (Sondow 2003, 2005; Borwein et al. 2004, p. 49), ...

...