TOPICS
Search

Elliptic Modulus


The elliptic modulus k is a quantity used in elliptic integrals and elliptic functions defined to be k=sqrt(m), where m is the parameter. An elliptic integral is written I(phi|m) when the parameter is used, whereas it is usually written I(phi,k) where the elliptic modulus is used. The elliptic modulus tends to be more commonly used than the parameter (Abramowitz and Stegun 1972, p. 337; Whittaker and Watson 1990, p. 479), although most of Abramowitz and Stegun (1972, pp. 587-607), i.e., the entire chapter on elliptic integrals, and the Wolfram Language's EllipticE, EllipticF, EllipticK, EllipticPi, etc., use the parameter.

The elliptic modulus can be computed explicitly in terms of Jacobi theta functions of zero argument and with nome q by

 k=(theta_2^2(0,q))/(theta_3^2(0,q)).
(1)

The real period K(k) and imaginary period K^'(k)=K(k^')=K(sqrt(1-k^2)) are given by

 4K(k)=2pitheta_3^2(0|tau)
(2)
 2iK^'(k)=pitautheta_3^2(0|tau),
(3)

where K(k) is a complete elliptic integral of the first kind and the complementary modulus is defined by

 k^('2)=1-k^2,
(4)

with k the modulus.


See also

Complementary Modulus, Elliptic Characteristic, Elliptic Function, Elliptic Integral, Elliptic Integral Singular Value, Half-Period Ratio, Jacobi Amplitude, Jacobi Theta Functions, Modular Angle, Nome, Parameter

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 590, 1972.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, p. 35, 1987.Tölke, F. "Parameterfunktionen." Ch. 3 in Praktische Funktionenlehre, zweiter Band: Theta-Funktionen und spezielle Weierstraßsche Funktionen. Berlin: Springer-Verlag, pp. 83-115, 1966.Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.

Referenced on Wolfram|Alpha

Elliptic Modulus

Cite this as:

Weisstein, Eric W. "Elliptic Modulus." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/EllipticModulus.html

Subject classifications