TOPICS
Search

Search Results for ""


121 - 130 of 1277 for Chebyshev PolynomialSearch Results
Let f(z) = z+a_1+a_2z^(-1)+a_3z^(-2)+... (1) = zsum_(n=0)^(infty)a_nz^(-n) (2) = zg(1/z) (3) be a Laurent polynomial with a_0=1. Then the Faber polynomial P_m(f) in f(z) of ...
A rook polynomial is a polynomial R_(m,n)(x)=sum_(k=0)^(min(m,n))r_kx^k (1) whose number of ways k nonattacking rooks can be arranged on an m×n chessboard. The rook ...
A polynomial given in terms of the Neumann polynomials O_n(x) by S_n(x)=(2xO_n(x)-2cos^2(1/2npi))/n.
There are two kinds of Bell polynomials. A Bell polynomial B_n(x), also called an exponential polynomial and denoted phi_n(x) (Bell 1934, Roman 1984, pp. 63-67) is a ...
A polynomial having random coefficients.
A sum over all cluster perimeters.
A primitive polynomial is a polynomial that generates all elements of an extension field from a base field. Primitive polynomials are also irreducible polynomials. For any ...
Polynomials s_n(x) which form the Sheffer sequence for f^(-1)(t)=1+t-e^t, (1) where f^(-1)(t) is the inverse function of f(t), and have generating function ...
Polynomials s_k(x) which form the Sheffer sequence for f(t)=-(2t)/(1-t^2) (1) and have exponential generating function ...
The polynomial giving the number of colorings with m colors of a structure defined by a permutation group.
1 ... 10|11|12|13|14|15|16 ... 128 Previous Next

...