Search Results for ""
1 - 10 of 1277 for Chebyshev PolynomialSearch Results
![](/common/images/search/spacer.gif)
A number of spellings of "Chebyshev" (which is the spelling used exclusively in this work) are commonly found in the literature. These include Tchebicheff, Čebyšev, ...
The Chebyshev polynomials of the first kind are a set of orthogonal polynomials defined as the solutions to the Chebyshev differential equation and denoted T_n(x). They are ...
A modified set of Chebyshev polynomials defined by a slightly different generating function. They arise in the development of four-dimensional spherical harmonics in angular ...
A polynomial is a mathematical expression involving a sum of powers in one or more variables multiplied by coefficients. A polynomial in one variable (i.e., a univariate ...
Using a Chebyshev polynomial of the first kind T(x), define c_j = 2/Nsum_(k=1)^(N)f(x_k)T_j(x_k) (1) = 2/Nsum_(k=1)^(N)f[cos{(pi(k-1/2))/N}]cos{(pij(k-1/2))/N}. (2) Then f(x) ...
Chebyshev-Gauss quadrature, also called Chebyshev quadrature, is a Gaussian quadrature over the interval [-1,1] with weighting function W(x)=(1-x^2)^(-1/2) (Abramowitz and ...
The Chebyshev integral is given by intx^p(1-x)^qdx=B(x;1+p,1+q), where B(x;a,b) is an incomplete beta function.
There are at least two theorems known as Chebyshev's theorem. The first is Bertrand's postulate, proposed by Bertrand in 1845 and proved by Chebyshev using elementary methods ...
(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+alpha^2y=0 (1) for |x|<1. The Chebyshev differential equation has regular singular points at -1, 1, and infty. It can be solved by series ...
Chebyshev iteration is a method for solving nonsymmetric problems (Golub and van Loan 1996, §10.1.5; Varga, 1962, Ch. 5). Chebyshev iteration avoids the computation of inner ...
![](/common/images/search/spacer.gif)
...