TOPICS
Search

Search Results for ""


1531 - 1540 of 1812 for Cayley graphsSearch Results
A number of areas of mathematics have the notion of a "dual" which can be applies to objects of that particular area. Whenever an object A has the property that it is equal ...
The hyperbolic sine integral, often called the "Shi function" for short, is defined by Shi(z)=int_0^z(sinht)/tdt. (1) The function is implemented in the Wolfram Language as ...
A simple polyhedron, also called a simplicial polyhedron, is a polyhedron that is topologically equivalent to a sphere (i.e., if it were inflated, it would produce a sphere) ...
Let the values of a function f(x) be tabulated at points x_i equally spaced by h=x_(i+1)-x_i, so f_1=f(x_1), f_2=f(x_2), ..., f_4=f(x_4). Then Simpson's 3/8 rule ...
Take the Helmholtz differential equation del ^2F+k^2F=0 (1) in spherical coordinates. This is just Laplace's equation in spherical coordinates with an additional term, (2) ...
A solution to the spherical Bessel differential equation. The two types of solutions are denoted j_n(x) (spherical Bessel function of the first kind) or n_n(x) (spherical ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
The spherical Hankel function of the first kind h_n^((1))(z) is defined by h_n^((1))(z) = sqrt(pi/(2z))H_(n+1/2)^((1))(z) (1) = j_n(z)+in_n(z), (2) where H_n^((1))(z) is the ...
The spherical Hankel function of the second kind h_n^((1))(z) is defined by h_n^((2))(z) = sqrt(pi/(2x))H_(n+1/2)^((2))(z) (1) = j_n(z)-in_n(z), (2) where H_n^((2))(z) is the ...
The ordinary differential equation z^2y^('')+zy^'+(z^2-nu^2)y=(4(1/2z)^(nu+1))/(sqrt(pi)Gamma(nu+1/2)), where Gamma(z) is the gamma function (Abramowitz and Stegun 1972, p. ...
1 ... 151|152|153|154|155|156|157 ... 182 Previous Next

...