Search Results for ""
211 - 220 of 2389 for Brahmagupta's theoremSearch Results
A reciprocity theorem for the case n=3 solved by Gauss using "integers" of the form a+brho, when rho is a root of x^2+x+1=0 (i.e., rho equals -(-1)^(1/3) or (-1)^(2/3)) and ...
For a cyclic quadrilateral, the sum of the products of the two pairs of opposite sides equals the product of the diagonals AB×CD+BC×DA=AC×BD (1) (Kimberling 1998, p. 223). ...
A theorem about (or providing an equivalent definition of) compact sets, originally due to Georg Cantor. Given a decreasing sequence of bounded nonempty closed sets C_1 ...
Frucht's theorem states that every finite group is the automorphism group of a finite undirected graph. This was conjectured by König (1936) and proved by Frucht (1939). In ...
Define E(x;q,a)=psi(x;q,a)-x/(phi(q)), (1) where psi(x;q,a)=sum_(n<=x; n=a (mod q))Lambda(n) (2) (Davenport 1980, p. 121), Lambda(n) is the Mangoldt function, and phi(q) is ...
For elliptic curves over the rationals Q, the group of rational points is always finitely generated (i.e., there always exists a finite set of group generators). This theorem ...
The q-analog of the binomial theorem (1-z)^n=1-nz+(n(n-1))/(1·2)z^2-(n(n-1)(n-2))/(1·2·3)z^3+... (1) is given by (1-z/(q^n))(1-z/(q^(n-1)))...(1-z/q) ...
Suppose a,b in N, n=ab+1, and x_1, ..., x_n is a sequence of n real numbers. Then this sequence contains a monotonic increasing (decreasing) subsequence of a+1 terms or a ...
A theorem that classifies planar regular closed curves up to regular homotopy by their contour winding numbers (Whitney 1937). In his thesis, S. Smale generalized this result ...
If a points A^', B^', and C^' are marked on each side of a triangle DeltaABC, one on each side (or on a side's extension), then the three Miquel circles (each through a ...
...
View search results from all Wolfram sites (5751 matches)

