Search Results for ""
101 - 110 of 355 for Bessels InequalitySearch Results
![](/common/images/search/spacer.gif)
Let n>=0 and alpha_1, alpha_2, ...be the positive roots of J_n(x)=0, where J_n(z) is a Bessel function of the first kind. An expansion of a function in the interval (0,1) in ...
The spherical Bessel function of the second kind, denoted y_nu(z) or n_nu(z), is defined by y_nu(z)=sqrt(pi/(2z))Y_(nu+1/2)(z), (1) where Y_nu(z) is a Bessel function of the ...
J_m(x)=(x^m)/(2^(m-1)sqrt(pi)Gamma(m+1/2))int_0^1cos(xt)(1-t^2)^(m-1/2)dt, where J_m(x) is a Bessel function of the first kind and Gamma(z) is the gamma function. Hankel's ...
J_n(z) = 1/(2pi)int_(-pi)^pie^(izcost)e^(in(t-pi/2))dt (1) = (i^(-n))/piint_0^pie^(izcost)cos(nt)dt (2) = 1/piint_0^picos(zsint-nt)dt (3) for n=0, 1, 2, ..., where J_n(z) is ...
e^(izcostheta)=sum_(n=-infty)^inftyi^nJ_n(z)e^(intheta), where J_n(z) is a Bessel function of the first kind. The identity can also be written ...
The integral transform (Kf)(x)=int_0^inftysqrt(xt)K_nu(xt)f(t)dt, where K_nu(x) is a modified Bessel function of the second kind. Note the lower limit of 0, not -infty as ...
For R[nu]>-1/2, J_nu(z)=(z/2)^nu2/(sqrt(pi)Gamma(nu+1/2))int_0^(pi/2)cos(zcost)sin^(2nu)tdt, where J_nu(z) is a Bessel function of the first kind, and Gamma(z) is the gamma ...
P(Z)=Z/(sigma^2)exp(-(Z^2+|V|^2)/(2sigma^2))I_0((Z|V|)/(sigma^2)), where I_0(z) is a modified Bessel function of the first kind and Z>0. For a derivation, see Papoulis ...
A generalization of the Bessel differential equation for functions of order 0, given by zy^('')+y^'+(z+A)y=0. Solutions are y=e^(+/-iz)_1F_1(1/2∓1/2iA;1;∓2iz), where ...
The Bessel functions of the first kind J_n(x) are defined as the solutions to the Bessel differential equation x^2(d^2y)/(dx^2)+x(dy)/(dx)+(x^2-n^2)y=0 (1) which are ...
![](/common/images/search/spacer.gif)
...