Search Results for ""
471 - 480 of 3359 for Bessel FunctionSearch Results
The Fourier transform of the generalized function 1/x is given by F_x(-PV1/(pix))(k) = -1/piPVint_(-infty)^infty(e^(-2piikx))/xdx (1) = ...
Riemann defined the function f(x) by f(x) = sum_(p^(nu)<=x; p prime)1/nu (1) = sum_(n=1)^(|_lgx_|)(pi(x^(1/n)))/n (2) = pi(x)+1/2pi(x^(1/2))+1/3pi(x^(1/3))+... (3) (Hardy ...
Let f(x,y) be a homogeneous function of order n so that f(tx,ty)=t^nf(x,y). (1) Then define x^'=xt and y^'=yt. Then nt^(n-1)f(x,y) = ...
For a delta function at (x_0,y_0), R(p,tau) = int_(-infty)^inftyint_(-infty)^inftydelta(x-x_0)delta(y-y_0)delta[y-(tau+px)]dydx (1) = ...
Zeros of the Riemann zeta function zeta(s) come in two different types. So-called "trivial zeros" occur at all negative even integers s=-2, -4, -6, ..., and "nontrivial ...
By way of analogy with the prime counting function pi(x), the notation pi_(a,b)(x) denotes the number of primes of the form ak+b less than or equal to x (Shanks 1993, pp. ...
Solving the wave equation on a disk gives a solution in terms of Bessel functions.
The Hankel transform (of order zero) is an integral transform equivalent to a two-dimensional Fourier transform with a radially symmetric integral kernel and also called the ...
The second solution Q_l(x) to the Legendre differential equation. The Legendre functions of the second kind satisfy the same recurrence relation as the Legendre polynomials. ...
There are four varieties of Airy functions: Ai(z), Bi(z), Gi(z), and Hi(z). Of these, Ai(z) and Bi(z) are by far the most common, with Gi(z) and Hi(z) being encountered much ...
...
View search results from all Wolfram sites (415017 matches)

