Search Results for ""
441 - 450 of 3359 for Bessel FunctionSearch Results
The noncentral chi-squared distribution with noncentrality parameter lambda is given by P_r(x) = ...
Let S_N(s)=sum_(n=1)^infty[(n^(1/N))]^(-s), (1) where [x] denotes nearest integer function, i.e., the integer closest to x. For s>3, S_2(s) = 2zeta(s-1) (2) S_3(s) = ...
The Mittag-Leffler function (Mittag-Leffler 1903, 1905) is an entire function defined by the series E_alpha(z)=sum_(k=0)^infty(z^k)/(Gamma(alphak+1)) (1) for alpha>0. It is ...
Let R(x) be the ramp function, then the Fourier transform of R(x) is given by F_x[R(x)](k) = int_(-infty)^inftye^(-2piikx)R(x)dx (1) = i/(4pi)delta^'(k)-1/(4pi^2k^2), (2) ...
A function H that maps an arbitrary length message M to a fixed length message digest MD is a collision-free hash function if 1. It is a one-way hash function. 2. It is hard ...
If (1-z)^(a+b-c)_2F_1(2a,2b;2c;z)=sum_(n=0)^inftya_nz^n, then where (a)_n is a Pochhammer symbol and _2F_1(a,b;c;z) is a hypergeometric function.
The elliptic exponential function eexp_(a,b)(u) gives the value of x in the elliptic logarithm eln_(a,b)(x)=1/2int_infty^x(dt)/(sqrt(t^3+at^2+bt)) for a and b real such that ...
The Erdős-Selfridge function g(k) is defined as the least integer bigger than k+1 such that the least prime factor of (g(k); k) exceeds k, where (n; k) is the binomial ...
There are two camps of thought on the meaning of general recursive function. One camp considers general recursive functions to be equivalent to the usual recursive functions. ...
The Weierstrass elliptic functions (or Weierstrass P-functions, voiced "p-functions") are elliptic functions which, unlike the Jacobi elliptic functions, have a second-order ...
...
View search results from all Wolfram sites (415017 matches)

