Search Results for ""
11711 - 11720 of 13135 for BASIC ALGEBRASearch Results
The Euler-Lagrange differential equation is the fundamental equation of calculus of variations. It states that if J is defined by an integral of the form J=intf(t,y,y^.)dt, ...
The Euler-Maclaurin integration and sums formulas can be derived from Darboux's formula by substituting the Bernoulli polynomial B_n(t) in for the function phi(t). ...
A beautiful approximation to the Euler-Mascheroni constant gamma is given by pi/(2e)=0.57786367... (1) (OEIS A086056; E. W. Weisstein, Apr. 18, 2006), which is good to three ...
The simple continued fraction of the Euler-Mascheroni constant gamma is [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, ...] (OEIS A002852). The first few ...
For s>1, the Riemann zeta function is given by zeta(s) = sum_(n=1)^(infty)1/(n^s) (1) = product_(k=1)^(infty)1/(1-1/(p_k^s)), (2) where p_k is the kth prime. This is Euler's ...
Euler conjectured that at least n nth powers are required for n>2 to provide a sum that is itself an nth power. The conjecture was disproved by Lander and Parkin (1967) with ...
A differential evolution method used to minimize functions of real variables. Evolution strategies are significantly faster at numerical optimization than traditional genetic ...
Consider a first-order ODE in the slightly different form p(x,y)dx+q(x,y)dy=0. (1) Such an equation is said to be exact if (partialp)/(partialy)=(partialq)/(partialx). (2) ...
Let E_1(x) be the En-function with n=1, E_1(x) = int_1^infty(e^(-tx)dt)/t (1) = int_x^infty(e^(-u)du)/u. (2) Then define the exponential integral Ei(x) by E_1(x)=-Ei(-x), (3) ...
There are essentially three types of Fisher-Tippett extreme value distributions. The most common is the type I distribution, which are sometimes referred to as Gumbel types ...
...
View search results from all Wolfram sites (38651 matches)

