Search Results for ""
571 - 580 of 617 for Atacama Large Millimeter ArraySearch Results

An arithmetic progression of primes is a set of primes of the form p_1+kd for fixed p_1 and d and consecutive k, i.e., {p_1,p_1+d,p_1+2d,...}. For example, 199, 409, 619, ...
The prime counting function is the function pi(x) giving the number of primes less than or equal to a given number x (Shanks 1993, p. 15). For example, there are no primes ...
Zeros of the Riemann zeta function zeta(s) come in two different types. So-called "trivial zeros" occur at all negative even integers s=-2, -4, -6, ..., and "nontrivial ...
The Smarandache function mu(n) is the function first considered by Lucas (1883), Neuberg (1887), and Kempner (1918) and subsequently rediscovered by Smarandache (1980) that ...
A Pythagorean triple is a triple of positive integers a, b, and c such that a right triangle exists with legs a,b and hypotenuse c. By the Pythagorean theorem, this is ...
The Fibonacci numbers are the sequence of numbers {F_n}_(n=1)^infty defined by the linear recurrence equation F_n=F_(n-1)+F_(n-2) (1) with F_1=F_2=1. As a result of the ...
The Jacobi theta functions are the elliptic analogs of the exponential function, and may be used to express the Jacobi elliptic functions. The theta functions are ...
A Mersenne prime is a Mersenne number, i.e., a number of the form M_n=2^n-1, that is prime. In order for M_n to be prime, n must itself be prime. This is true since for ...
Catalan's constant is a constant that commonly appears in estimates of combinatorial functions and in certain classes of sums and definite integrals. It is usually denoted K ...
Let p be a prime with n digits and let A be a constant. Call p an "A-prime" if the concatenation of the first n digits of A (ignoring the decimal point if one is present) ...

...