TOPICS
Search

Search Results for ""


2861 - 2870 of 7050 for 3Search Results
d is called an e-divisor (or exponential divisor) of a number n with prime factorization n=p_1^(a_1)p_2^(a_2)...p_r^(a_r) if d|n and d=p_1^(b_1)p_2^(b_2)...p_r^(b_r), where ...
A Latin square is said to be odd if it contains an odd number of rows and columns that are odd permutations. Otherwise, it is said to be even. Let the number of even Latin ...
The 7.1.2 equation A^7+B^7=C^7 (1) is a special case of Fermat's last theorem with n=7, and so has no solution. No solutions to the 7.1.3, 7.1.4, 7.1.5, 7.1.6 equations are ...
Let z=re^(itheta)=x+iy be a complex number, then inequality |(zexp(sqrt(1-z^2)))/(1+sqrt(1-z^2))|<=1 (1) holds in the lens-shaped region illustrated above. Written explicitly ...
An interspersion array given by 1 2 3 5 8 13 21 34 55 ...; 4 6 10 16 26 42 68 110 178 ...; 7 11 18 29 47 76 123 199 322 ...; 9 15 24 39 63 102 165 267 432 ...; 12 19 31 50 81 ...
cos(pi/(15)) = 1/8(sqrt(30+6sqrt(5))+sqrt(5)-1) (1) cos((2pi)/(15)) = 1/8(sqrt(30-6sqrt(5))+sqrt(5)+1) (2) cos((4pi)/(15)) = 1/8(sqrt(30+6sqrt(5))-sqrt(5)+1) (3) ...
cos(pi/(16)) = 1/2sqrt(2+sqrt(2+sqrt(2))) (1) cos((3pi)/(16)) = 1/2sqrt(2+sqrt(2-sqrt(2))) (2) cos((5pi)/(16)) = 1/2sqrt(2-sqrt(2-sqrt(2))) (3) cos((7pi)/(16)) = ...
cos(pi/(30)) = 1/4sqrt(7+sqrt(5)+sqrt(6(5+sqrt(5)))) (1) cos((7pi)/(30)) = 1/4sqrt(7-sqrt(5)+sqrt(6(5-sqrt(5)))) (2) cos((11pi)/(30)) = 1/4sqrt(7+sqrt(5)-sqrt(6(5+sqrt(5)))) ...
The number of representations of n by k squares, allowing zeros and distinguishing signs and order, is denoted r_k(n). The special case k=2 corresponding to two squares is ...
Closed forms are known for the sums of reciprocals of even-indexed Fibonacci numbers P_F^((e)) = sum_(n=1)^(infty)1/(F_(2n)) (1) = ...
1 ... 284|285|286|287|288|289|290 ... 705 Previous Next

...