TOPICS
Search

Wigner 9j-Symbol


The Wigner 9j-symbols are a generalization of Clebsch-Gordan coefficients and Wigner 3j- and 6j-symbols which arises in the coupling of four angular momenta. They can be written in terms of the Wigner 3j- and Wigner 6j-symbols.

Let tensor operators T^((k_1)) and U^((k_2)) act, respectively, on subsystems 1 and 2. Then the reduced matrix element of the product T^((k_1))×U^((k_2)) of these two irreducible operators in the coupled representation is given in terms of the reduced matrix elements of the individual operators in the uncoupled representation by

 (tau^'tau_1^'j_1^'tau_2^'j_2^'J^'∥[T^((k_1))×U^((k_2))]^((k))∥tautau_1j_1tau_2j_2J) 
=sqrt((2J+1)(2J^'+1)(2k+1))sum_(tau^('')){j_1^' j_1 k_1; j_2^' j_2 k_2; J^' J k} 
 ×(tau^'tau_1^'j_1^'∥T^((k_1))∥tau^('')tau_1j_1)(tau^('')tau_2^'j_2^'∥U^((k_2))∥tautau_2j_2),
(1)

where {j_1^' j_1 k_1; j_2^' j_2 k_2; J^' J k} is a Wigner 9j-symbol (Gordy and Cook 1984).

In terms of the 3j-symbols,

 (J_(13) J_(24) J; M_(13) M_(24) M){j_1 j_2 J_(12); j_3 j_4 J_(34); J_(13) J_(24) J} 
=sum_(m_1,m_2,m_3,m_4; M_(12),M_(34))(j_1 j_2 J_(12); m_1 m_2 M_(12))×(j_3 j_4 J_(34); m_3 m_4 M_(34))(j_1 j_3 J_(13); m_1 m_3 M_(13))×(j_2 j_4 J_(24); m_2 m_4 M_(24))(J_(12) J_(34) J; M_(12) M_(34) M)
(2)

(Messiah 1962, p. 1067; Shore and Menzel 1968, pp. 282-283).

In terms of the 6j-symbols,

 {j_1 j_2 J_(12); j_3 j_4 J_(34); J_(13) J_(24) J}=sum_(g)(-1)^(2g)(2g+1)×{j_1 j_2 J_(12); J_(34) J g}{j_3 j_4 J_(34); j_2 g J_(24)}{J_(13) J_(24) J; g j_1 j_3}
(3)

(Messiah 1962, p. 1067; Shore and Menzel 1968, p. 282).

A 9j-symbol {J_1 J_2 J_3; J_4 J_5 J_6; J_7 J_8 J_9} is invariant under reflection through one of the diagonals, and becomes multiplied by (-1)^R upon the exchange of two rows or columns, where R=sum_(i=1)^(9)J_i (Messiah 1962, p. 1067). It also satisfies the orthogonality relationship

 sum_(J_(13),J_(24))(2J_(13)+1)(2J_(24)+1){j_1 j_2 J_(12); j_3 j_4 J_(34); J_(13) J_(24) J}×{j_1 j_2 J_(12)^'; j_3 j_4 J_(34)^'; J_(13) J_(24) J}=(delta_(J_(12))delta_(J_(12)^')delta_(J_(34))delta_(J_(34)^'))/((2J_(12)+1)(2J_(34)+1))
(4)

(Messiah 1962, p. 1067).

Explicit formulas include

{a b J; c d J; K K 0}=((-1)^(b+c+J+K))/(sqrt((2J+1)(2K+1))){a b J; d c K}
(5)
{S S 1; L L 2; J J 1}=({S L J; L S 1}{J L S; L J 1})/(5{2 L L; L 1 1})+((-1)^(S+L+J+1))/(15(2L+1))({S J L; J S 1})/({2 L L; L 1 1})
(6)
{a b C; d e F; G H I}=(-1)^S{a c b; d f e; G I H}
(7)
=(-1)^S{d e F; a b C; G H I}
(8)

where

 S=a+b+C+d+e+F+G+H+I
(9)

(Messiah 1962, p. 1068; Shore and Menzel 1968, p. 282).


See also

Clebsch-Gordan Coefficient, Racah V-Coefficient, Racah W-Coefficient, Wigner 3j-Symbol, Wigner 6j-Symbol

Explore with Wolfram|Alpha

References

Biedenharn, L. C. and Louck, J. D. The Racah-Wigner Algebra in Quantum Theory. Reading, MA: Addison-Wesley, 1981.Biedenharn, L. C. and Louck, J. D. Angular Momentum in Quantum Physics: Theory and Applications. Reading, MA: Addison-Wesley, 1981.Gordy, W. and Cook, R. L. Microwave Molecular Spectra, 3rd ed. New York: Wiley, pp. 807-809, 1984.Messiah, A. "'9j' Symbols." Appendix C.III in Quantum Mechanics, Vol. 2. Amsterdam, Netherlands: North-Holland, pp. 567-569 and 1066-1068, 1962.Shore, B. W. and Menzel, D. H. Principles of Atomic Spectra. New York: Wiley, pp. 279-284, 1968.

Referenced on Wolfram|Alpha

Wigner 9j-Symbol

Cite this as:

Weisstein, Eric W. "Wigner 9j-Symbol." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Wigner9j-Symbol.html

Subject classifications