TOPICS
Search

Triangle Ellipse Inscribing


EllipseTriangle

To inscribe an equilateral triangle in an ellipse, place the top polygon vertex at (0,b), then solve to find the (x,y) coordinate of the other two vertices.

 sqrt(x^2+(b-y)^2)=2x
(1)
 x^2+(b-y)^2=4x^2
(2)
 3x^2=(b-y)^2.
(3)

Now plugging in the equation of the ellipse

 (x^2)/(a^2)+(y^2)/(b^2)=1,
(4)

gives

 3a^2(1-(y^2)/(b^2))=b^2-2by+y^2
(5)
 y^2(1+3(a^2)/(b^2))-2by+(b^2-3a^2)=0
(6)
y=(2b-sqrt(4b^2-4(b^2-3a^2)(1+3(a^2)/(b^2))))/(2(1+3(a^2)/(b^2)))
(7)
=(1-sqrt(1-(1-3(a^2)/(b^2))(1+3(a^2)/(b^2))))/(1+3(a^2)/(b^2))b,
(8)

and

 x=+/-asqrt(1-(y^2)/(b^2)).
(9)

See also

Castillon's Problem, Ellipse, Equilateral Triangle

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Triangle Ellipse Inscribing." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/TriangleEllipseInscribing.html

Subject classifications