TOPICS
Search

Strong Lucas Pseudoprime


Let U(P,Q) and V(P,Q) be Lucas sequences generated by P and Q, and define

 D=P^2-4Q.
(1)

Let n be an odd composite number with (n,D)=1, and n-(D/n)=2^sd with d odd and s>=0, where (a/b) is the Legendre symbol. If

 U_d=0 (mod n)
(2)

or

 V_(2^rd)=0 (mod n)
(3)

for some r with 0<=r<s, then n is called a strong Lucas pseudoprime with parameters (P,Q).

A strong Lucas pseudoprime is a Lucas pseudoprime to the same base. Arnault (1997) showed that any composite number n is a strong Lucas pseudoprime for at most 4/15 of possible bases (unless n is the product of twin primes having certain properties).


See also

Extra Strong Lucas Pseudoprime, Lucas Pseudoprime

Explore with Wolfram|Alpha

References

Arnault, F. "The Rabin-Monier Theorem for Lucas Pseudoprimes." Math. Comput. 66, 869-881, 1997.Ribenboim, P. "Euler-Lucas Pseudoprimes (elpsp(P,Q)) and Strong Lucas Pseudoprimes (slpsp(P,Q))." §2.X.C in The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 130-131, 1996.

Referenced on Wolfram|Alpha

Strong Lucas Pseudoprime

Cite this as:

Weisstein, Eric W. "Strong Lucas Pseudoprime." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/StrongLucasPseudoprime.html

Subject classifications