TOPICS
Search

Rittaud Constant


For any fixed g_0 and g_1 (not both equal to zero), define m_n as the mean value of the nth term of a random Fibonacci sequence starting from g_0 and g_1. Then the ratio m_(n+1)/m_n tends to a constant C, where C has the value

C=(x^3+x^2-x-2)_1
(1)
=1.20556943...
(2)

(OEIS A137421; Rittaud 2007, Janvresse et al. 2008, Finch 2024), where (P(x))_1 denotes the first (and in this case only real) root of the polynomial P(x).

This number may be termed the Rittaud constant.


See also

Random Fibonacci Sequence

Explore with Wolfram|Alpha

References

Finch, S. R. "Errata and Addenda to Mathematical Constants." 27 May 2024. https://arxiv.org/abs/2001.00578.Janvresse, E.; Rittaud, B.; and de la Rue, T. "Growth Rate for the Expected Value of a Generalized Random Fibonacci Sequence." 15 Apr 2008. https://arxiv.org/abs/0804.2400.Rittaud, B. "On the Average Growth of Random Fibonacci Sequences." J. Integer Seq. 10, Article 07.2.4, 2007. https://cs.uwaterloo.ca/journals/JIS/VOL10/Rittaud2/rittaud11.html.Rittaud, B.; Janvresse, E.; Lesigne, E. and Novelli, J.-C. Quand les maths se font discrètes. Le Pommier, p. 119, 2008.Sloane, N. J. A. Sequence 137421 A

Cite this as:

Weisstein, Eric W. "Rittaud Constant." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/RittaudConstant.html

Subject classifications