TOPICS
Search

Rembs' Surface


RembsSurface

A surface of constant Gaussian curvature that can be given parametrically by

x=a(Ucosu-U^'sinu)
(1)
y=-a(Usinu+U^'cosu)
(2)
z=v-aV^',
(3)

where

U=(cosh(usqrt(C)))/(sqrt(C))
(4)
V=(cos(vsqrt(C+1)))/(sqrt(C+1))
(5)
a=(2V)/((C+1)(U^2-V^2)),
(6)

and U^'=dU/du, and V^'=dV/dv. The value of v is restricted to

 |v|<=v_0=pi/(2sqrt(C+1))
(7)

(Reckziegel 1986), and the values v=+/-v_0 correspond to the ends of the cleft in the surface. The surface illustrated above corresponds to C=1.

The coefficients of the first fundamental form are given by

E=(16C(1+C)cos^2(vsqrt(C+1))cosh^2(usqrt(C)))/([1-Ccos(2vsqrt(C+1))+(C+1)cosh(2usqrt(C))]^2)
(8)
F=0
(9)
G=([1+2C+Ccos(2vsqrt(C+1))+(C+1)cosh(2usqrt(C))]^2)/([1-Ccos(2vsqrt(C+1))+(C+1)cosh(2usqrt(C))]^2),
(10)

with coefficients of the second fundamental form given by similar, but rather complicated, expressions. The Gaussian curvature is

 K=1,
(11)

with the mean curvature given by a rather complicated expression.


See also

Kuen Surface, Sievert's Surface

Explore with Wolfram|Alpha

References

Fischer, G. (Ed.). Plate 88 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 84, 1986.Reckziegel, H. "Sievert's Surface." §3.4.4.3 in Mathematical Models from the Collections of Universities and Museums (Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 39-40, 1986.Rembs, E. "Enneper'sche Flächen konstanter positiver Krümmung und Hazzidakissche Transformationen." Jahrber. DMV 39, 278-283, 1930.

Cite this as:

Weisstein, Eric W. "Rembs' Surface." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RembsSurface.html

Subject classifications