The Ramsey number
gives the solution to the party problem, which asks
the minimum number of guests that must be invited so that at least will know each other or at least will not know each other. In the language of graph
theory, the Ramsey number is the minimum number of vertices such that all undirected simple graphs of order contain a clique
of order or
an independent set of order . Ramsey's theorem states
that such a number exists for all and .
By symmetry, it is true that
(1)
It also must be true that
(2)
A generalized Ramsey number is written
(3)
and is the smallest integer such that, no matter how each -element subset of an -element set is colored with colors, there exists an such that there is a subset of
size ,
all of whose -element
subsets are color . The usual Ramsey numbers are then equivalent to .
Bounds are given by
(4)
and
(5)
(Chung and Grinstead 1983). Erdős proved that for diagonal Ramsey numbers ,
(6)
This result was subsequently improved by a factor of 2 by Spencer (1975). was known since 1980 to be bounded from above by , and Griggs (1983) showed that
was an acceptable limit. J.-H.
Kim (Cipra 1995) subsequently bounded by a similar expression from below, so
(7)
Burr (1983) gives Ramsey numbers for all 113 graphs with no more than 6 graph
edges and no isolated points.
A summary of known results up to 1983 for is given in Chung and Grinstead (1983). Radziszowski
(2004) maintains an up-to-date list of the best current bounds. Results from Tables
I and II of Radziszowski (2004) are reproduced below in a slightly less cramped format
than in the original. Known bounds for generalized Ramsey numbers (multicolor graph
numbers), hypergraph Ramsey numbers, and many other types of Ramsey numbers may be
found in Radziszowski (2004). In the absence of a published upper bound, the theorem
of Erdős-Szekeres stating that is used to provide one.
Reference
3
3
6
Greenwood
and Gleason 1955
3
4
9
Greenwood and Gleason 1955
3
5
14
Greenwood
and Gleason 1955
3
6
18
Graver and Yackel 1968
3
7
23
Kalbfleisch
1966
3
8
28
McKay and Min 1992
3
9
36
Grinstead and Roberts
1982
3
10
[40,
43]
Exoo 1989c, Radziszowski and Kreher 1988
3
11
[46, 51]
Radziszowski
and Kreher 1988
3
12
[52, 59]
Exoo 1993, Radziszowski and Kreher 1988,
Exoo 1998, Lesser 2001
3
13
[59, 69]
Piwakowski 1996, Radziszowski and Kreher
1988
3
14
[66,
78]
Exoo (unpub.), Radziszowski and Kreher 1988
3
15
[73,
88]
Wang and Wang 1989, Radziszowski (unpub.), Lesser 2001
3
16
[79,
135]
Wang and Wang 1989
3
17
[92, 152]
Wang et al.
1994
3
18
[98,
170]
Wang et al. 1994
3
19
[106, 189]
Wang et al.
1994
3
20
[109,
209]
Wang et al. 1994
3
21
[122, 230]
Wang et al.
1994
3
22
[125,
252]
Wang et al. 1994
3
23
[136, 275]
Wang et al.
1994
4
4
18
Greenwood and Gleason 1955
4
5
25
McKay and Radziszowski
1995
4
6
[35,
41]
Exoo (unpub.), McKay and Radziszowski 1995
4
7
[49, 61]
Exoo 1989a, Mackey 1994
4
8
[56, 84]
Exoo 1998, Exoo
2002
4
9
[73,
115]
Radziszowski 1988, Mackey 1994
4
10
[92, 149]
Piwakowski 1996, Mackey 1994, Harboth and Krause 2003
4
11
[97, 191]
Piwakowski 1996, Spencer 1994, Burr et al. 1989
4
12
[128, 238]
Su et al. 1998, Spencer 1994
4
13
[133, 291]
Xu and Xie
2002
4
14
[141,
349]
Xu and Xie 2002
4
15
[153, 417]
Xu and Xie
2002
4
16
[153,
815]
4
17
[182, 968]
Luo et al. 2001
4
18
[182, 1139]
4
19
[198, 1329]
Luo et al. 2002
4
20
[230, 1539]
Su et al. 1999
4
21
[242, 1770]
Su et al. 1999
4
22
[282, 2023]
Su et al. 1999
5
5
[43, 49]
Exoo 1989b, McKay and Radziszowski 1995
5
6
[58, 87]
Exoo 1993, Walker 1971
5
7
[80, 143]
CET, Spencer
1994
5
8
[101,
216]
Piwakowski 1996, Spencer 1994, Harborth and Krause 2003
5
9
[125,
316]
Exoo 1998, Haanpää 2000
5
10
[143, 442]
Exoo 1998, Mackey 1994
5
11
[157, 1000]
Exoo 1998,
Xiaodong et al. 2004
5
12
[181, 1364]
Exoo 1998
5
13
[205, 1819]
Exoo 1998, Xiaodong et al. 2004
5
14
[233, 2379]
Exoo 1998,
Xiaodong et al. 2004
5
15
[261, 3059]
Su et al. 2002, Xiaodong et al. 2004
5
16
[278,
3875]
Luo et al. 2001
5
17
[284, 4844]
Exoo 2002
5
18
[284,
5984]
5
19
[338, 7314]
Su et al. 1999
5
20
[380, 8854]
Luo et al. 2001
5
21
[380, 10625]
5
22
[422, 12649]
Luo et al.
2000
5
23
[434,
14949]
Luo et al. 2000
5
24
[434, 17549]
5
25
[434,
20474]
5
26
[464, 23750]
6
6
[102, 165]
Kalbfleisch
1965, Mackey 1994
6
7
[113, 298]
Exoo 1998, Xu and Xie 2002
6
8
[127,
495]
Exoo 1998, Xu and Xie 2002
6
9
[169, 780]
Exoo 1998,
Mackey 1994, Xiaodong et al. 2004
6
10
[179, 1171]
Xu and Xie
2002
6
11
[253,
3002]
Xu and Xie 2002
6
12
[262, 4367]
Xu and Xie
2002
6
13
[317,
6187]
Xu and Xie 2002, Xiaodong et al. 2004
6
14
[317, 8567]
Xu and Xie 2002
6
15
[401, 11627]
Su et al. 2002, Xiaodong et al. 2004
6
16
[434,
15503]
Su et al. 2002
6
17
[548, 20348]
Su et al.
2002
6
18
[614,
26333]
Su et al. 2002
6
19
[710, 33648]
Su et al.
2002
6
20
[878,
42503]
Su et al. 2002
6
21
[878, 53129]
6
22
[1070,
65779]
Su et al. 2002
7
7
[205, 540]
Hill and Irving
1982, Giraud 1973
7
8
[216, 1031]
Xu and Xie 2002
7
9
[233, 1713]
Huang and Zhang 1998, Xiaodong and Zheng 2002
7
10
[232, 2826]
Mackey 1994
7
11
[405, 8007]
Xu and Xie 2002, Xiaodong and Zheng
2002
7
12
[416,
12375]
Xu and Xie 2002
7
13
[511, 18563]
Xu and Xie
2002
7
14
[511,
27131]
7
15
[511, 38759]
7
16
[511, 54263]
7
17
[628,
74612]
Xu and Xie 2002
7
18
[722, 100946]
Xu and
Xie 2002
7
19
[908, 134595]
Su et al. 2002
7
20
[908, 177099]
7
21
[1214, 230229]
Su et al. 2002
8
8
[282, 1870]
Burling and Reyner 1972, Mackey 1994
8
9
[317, 3583]
Radziszowski
2002, Xiaodong et al. 2004
8
10
[377, 6090]
Xu and Xie 2002, Huang and Zhang 1998,
Xiaodong et al. 2004
Burling, J. P. and Reyner, S. W. "Some Lower Bounds of the Ramsey Numbers ." J. Combin. Th. Ser. B13, 168-169,
1972.Burr, S. A. "Generalized Ramsey Theory for Graphs--A
Survey." In Graphs and Combinatorics (Ed. R. A. Bari and F. Harary).
New York: Springer-Verlag, pp. 52-75, 1974.Burr, S. A. "Diagonal
Ramsey Numbers for Small Graphs." J. Graph Th.7, 57-69, 1983.Burr,
S. A.; Erdős, P.; Faudree, R. J.; and Schelp, R. H. "On
the Difference between Consecutive Ramsey Numbers." Util. Math.35,
115-118, 1989.Chartrand, G. "The Problem of the Eccentric Hosts:
An Introduction to Ramsey Numbers." §5.1 in Introductory
Graph Theory. New York: Dover, pp. 108-115, 1985.Chung,
F. R. K. "On the Ramsey Numbers ." Discrete Math.5, 317-321,
1973.Chung, F. and Grinstead, C. G. "A Survey of Bounds for
Classical Ramsey Numbers." J. Graph. Th.7, 25-37, 1983.Cipra,
B. "A Visit to Asymptopia Yields Insights into Set Structures." Science267,
964-965, 1995.Exoo, G. "Applying Optimization Algorithm to Ramsey
Problems." In Graph
Theory, Combinatorics, Algorithms, and Applications (Ed. Y. Alavi).
Philadelphia: SIAM, pp. 175-179, 1989a.Exoo, G. "A Lower Bound
for ."
J. Graph Th.13, 97-98, 1989.Exoo, G. "On Two Classical
Ramsey Numbers of the Form ." SIAM J. Discrete Math.2, 488-490,
1989c.Exoo, G. "Announcement: On the Ramsey Numbers , and ." Ars Combin.35, 85, 1993.Exoo,
G. "A Lower Bound for Schur Numbers and Multicolor Ramsey Numbers of ." Electronic J. Combinatorics1, No. 1,
R8, 1-3, 1994. http://www.combinatorics.org/Volume_1/Abstracts/v1i1r8.html.Exoo,
G. "Some New Ramsey Colorings." Electronic J. Combinatorics5,
No. 1, R29, 1-5, 1998. http://www.combinatorics.org/Volume_5/Abstracts/v5i1r29.html.Exoo,
G. "Some Applications of -Groups in Graph Theory." Preprint. 2002.Folkmann,
J. "Notes on the Ramsey Number ." J. Combinat. Theory. Ser. A16,
371-379, 1974.Fredricksen, H. "Schur Numbers and the Ramsey Numbers
." J. Combin. Theory
Ser. A27, 376-377, 1979.Gardner, M. "Mathematical Games:
In Which Joining Sets of Points by Lines Leads into Diverse (and Diverting) Paths."
Sci. Amer.237, 18-28, 1977.Gardner, M. Penrose
Tiles and Trapdoor Ciphers... and the Return of Dr. Matrix, reissue ed.
New York: W. H. Freeman, pp. 240-241, 1989.Giraud, G. "Une
minoration du nombre de quadrangles unicolores et son application a la majoration
des nombres de Ramsey binaires bicolors." C. R. Acad. Sci. Paris A276,
1173-1175, 1973.Graham, R. L.; Rothschild, B. L.; and Spencer,
J. H. Ramsey
Theory, 2nd ed. New York: Wiley, 1990.Graver, J. E. and
Yackel, J. "Some Graph Theoretic Results Associated with Ramsey's Theorem."
J. Combin. Th.4, 125-175, 1968.Greenwood, R. E.
and Gleason, A. M. "Combinatorial Relations and Chromatic Graphs."
Canad. J. Math.7, 1-7, 1955.Griggs, J. R. "An
Upper Bound on the Ramsey Numbers ." J. Comb. Th. A35, 145-153, 1983.Grinstead,
C. M. and Roberts, S. M. "On the Ramsey Numbers and ." J. Combinat. Th. Ser. B33, 27-51,
1982.Guldan, F. and Tomasta, P. "New Lower Bounds of Some Diagonal
Ramsey Numbers." J. Graph. Th.7, 149-151, 1983.Haanpää,
H. "A Lower Bound for a Ramsey Number." Congr. Numer.144,
189-191, 2000.Hanson, D. "Sum-Free Sets and Ramsey Numbers."
Discrete Math.14, 57-61, 1976.Harary, F. "Recent
Results on Generalized Ramsey Theory for Graphs." In Graph
Theory and Applications: Proceedings of the Conference at Western Michigan University,
Kalamazoo, Mich., May 10-13, 1972 (Ed. Y. Alavi, D. R. Lick,
and A. T. White). New York: Springer-Verlag, pp. 125-138, 1972.Harborth,
H. and Krause, S. "Ramsey Numbers for Circulant Colorings." Congr. Numer.161,
139-150, 2003.Hill, R. and Irving, R. W. "On Group Partitions
Associated with Lower Bounds for Symmetric Ramsey Numbers." European J. Combin.3,
35-50, 1982.Hoffman, P. The
Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical
Truth. New York: Hyperion, pp. 52-53, 1998.Huang, Y. R.
and Zhang, K. M. "An New Upper Bound Formula for Two Color Classical Ramsey
Numbers." J. Combin. Math. Combin. Comput.28, 347-350, 1998.Kalbfleisch,
J. G. Chromatic Graphs and Ramsey's Theorem. Ph.D. thesis, University
of Waterloo, January 1966.Lesser, A. "Theoretical and Computational
Aspects of Ramsey Theory." Examensarbeten i Matematik, Matematiska Institutionen,
Stockholms Universitet3, 2001.Luo, H.; Su, W.; and Li, Z.
"The Properties of Self-Complementary Graphs and New Lower Bounds for Diagonal
Ramsey Numbers." Australasian J. Combin.25, 103-116, 2002.Luo,
H.; Su, W.; and Shen, Y.-Q. "New Lower Bounds of Ten Classical Ramsey Numbers."
Australasian J. Combin.24, 81-90, 2001.Luo, H.; Su, W.;
Zhang, Z.; and Li, G. "New Lower Bounds for Twelve Classical 2-Color Ramsey
Numbers ."
Guangxi Sci.7, 120-121, 2000.Mackey, J. Combinatorial
Remedies. Ph.D. thesis. Department of Mathematics, University of Hawaii, 1994.Mathon,
R. "Lower Bounds for Ramsey Numbers and Association Schemes." J. Combin.
Th. Ser. B42, 122-127, 1987.McKay, B. D. and Min, Z. K.
"The Value of the Ramsey Number ." J. Graph Th.16, 99-105, 1992.McKay,
B. D. and Radziszowski, S. P. "." J. Graph. Th19, 309-322, 1995.Piwakowski,
K. "Applying Tabu Search to Determine New Ramsey Numbers." Electronic
J. Combinatorics3, No. 1, R6, 1-4, 1996. http://www.combinatorics.org/Volume_3/Abstracts/v3i1r6.html.Radziszowski,
S. P. "Small Ramsey Numbers." Electronic J. Combinatorics Dynamical
Survey DS1, 1-42, Jul. 4, 2004. http://www.combinatorics.org/Surveys/#DS1.Radziszowski,
S. and Kreher, D. L. "Search Algorithm for Ramsey Graphs by Union of Group
Orbits." J. Graph Th.12, 59-72, 1988a.Radziszowski,
S. and Kreher, D. L. "Upper Bounds for Some Ramsey Numbers ." J. Combinat. Math. Combin. Comput.4,
207-212, 1988b.Robertson, A. "New Lower Bounds for Some Multicolored
Ramsey Numbers." Electronic J. Combinatorics6, No. 1, R3,
1-6, 1999. http://www.combinatorics.org/Volume_6/Abstracts/v6i1r3.html.Shearer,
J. B. "Lower Bounds for Small Diagonal Ramsey Numbers." J. Combin.
Th. Ser. A42, 302-304, 1986.Shi, L. S. "Upper
Bounds for Ramsey Numbers." Preprint. 2002.Shi, L. S. and
Zhang, K. M. "An Upper Bound Formula for Ramsey Numbers" Preprint.
2001.Spencer, J. H. "Ramsey's Theorem--A New Lower Bound."
J. Combinat. Theory Ser. A18, 108-115, 1975.Spencer,
T. "Upper Bounds for Ramsey Numbers via Linear Programming." Preprint.
1994.Su, W.; Luo, H.; Li, G.; and Li, Q. "Lower Bounds of Ramsey
Numbers Based on Cubic Residues." Disc. Math.250, 197-209, 2002.Su,
W.; Luo, H.; Li, G.; and Li, Q. "New Lower Bounds of Classical Ramsey Numbers
, , and ." Chinese Sci. Bull.43, 528, 1998.Su,
W.; Luo, H.; Zhang, Z.; and Li, G. "New Lower Bounds of Fifteen Classical Ramsey
Numbers." Australasian J. Combin.19, 91-99, 1999.Wang,
Q. and Wang, G. "New Lower Bounds for the Ramsey Numbers ." Beijing Daxue Xuebao25, 117-121,
1989.Wang, Q.; Wang, G.; and Yan, S. "A Search Algorithm and New
Lower Bounds for Ramsey Numbers ." Preprint. 1994.Whitehead, E. G.
"The Ramsey Number ."
Discrete Math.4, 389-396, 1973.Xiaodong, X. and Zheng,
X. "A Constructive Approach for the Lower Bounds on the Ramsey Numbers ." Unpublished manuscript,
2002.Xiaodong, X.; Zheng, X.; Exoo, G.; and Radziszowski, S. P.
"Constructive Lower Bounds on Classical Multicolor Ramsey Numbers." Elec.
J. Combin.11, 2004. http://www.combinatorics.org/Volume_11/PDF/v11i1r35.pdf.