![R(p,tau)=int_(-infty)^inftyint_(-infty)^inftyf(x,y)delta[y-(tau+px)]dydx,](/images/equations/RadonTransformSquare/NumberedEquation1.svg) |
(1)
|
where
![f(x,y)={1 for x,y in [-a,a]; 0 otherwise](/images/equations/RadonTransformSquare/NumberedEquation2.svg) |
(2)
|
and
 |
(3)
|
is the delta function.
From Gradshteyn and Ryzhik (2000, equation 3.741.3),
 |
(12)
|
so
![R(p,tau)=1/p{sgn[(tau+a)pa]min(|tau+a|,|pa|)-sgn[(tau-a)pa]min(|tau-a|,|pa|)}.](/images/equations/RadonTransformSquare/NumberedEquation5.svg) |
(13)
|
This can also be written explicitly in the form
 |
(14)
|
See also
Radon Transform,
Radon Transform--Cylinder,
Radon Transform--Delta
Function,
Radon Transform--Gaussian
Explore with Wolfram|Alpha
References
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press,
2000.
Cite this as:
Weisstein, Eric W. "Radon Transform--Square."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/RadonTransformSquare.html
Subject classifications