TOPICS
Search

Projective Symplectic Group


The projective symplectic group PSp_n(q) is the group obtained from the symplectic group Sp_n(q) on factoring by the scalar matrices contained in that group. PSp_(2m)(q) is simple except for

Psp_2(2)=S_3
(1)
Psp_2(3)=A_4
(2)
Psp_4(2)=S_6,
(3)

so it is given the simpler name S_(2m)(q), with S_2(q)=L_2(q).


Explore with Wolfram|Alpha

References

Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; and Wilson, R. A. "The Groups Sp_n(q) and Psp_n(q)=S_n(q)." §2.3 in Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford, England: Clarendon Press, pp. x-xi, 1985.

Referenced on Wolfram|Alpha

Projective Symplectic Group

Cite this as:

Weisstein, Eric W. "Projective Symplectic Group." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ProjectiveSymplecticGroup.html

Subject classifications