TOPICS

# Pentagonal Number

A polygonal number of the form . The first few are 1, 5, 12, 22, 35, 51, 70, ... (OEIS A000326). The generating function for the pentagonal numbers is

Every pentagonal number is 1/3 of a triangular number.

The so-called generalized pentagonal numbers are given by with , , , ..., the first few of which are 0, 1, 2, 5, 7, 12, 15, 22, 26, 35, ... (OEIS A001318).

There are conjectured to be exactly 210 positive integers that cannot be represented using three pentagonal numbers, namely 4, 8, 9, 16, 19, 20, 21, 26, 30, 31, 33, 38, 42, 43, 50, 54, ..., 20250, 33066, (OEIS A007527; Guy 1994a).

There are six positive integers that cannot be expressed using four pentagonal numbers: 9, 21, 31, 43, 55, and 89 (OEIS A133929).

All positive integers can be expressed using five pentagonal numbers.

Letting be the set of numbers relatively prime to 6, the generalized pentagonal numbers are given by . Also, letting be the subset of the for which , the usual pentagonal numbers are given by (D. Terr, pers. comm., May 20, 2004).

Heptagonal Pentagonal Number, Hexagonal Pentagonal Number, Octagonal Pentagonal Number, Partition Function P, Pentagonal Number Theorem, Pentagonal Square Number, Pentagonal Triangular Number, Polygonal Number, Triangular Number

## Explore with Wolfram|Alpha

More things to try:

## References

Guy, R. K. "Every Number Is Expressible as the Sum of How Many Polygonal Numbers?." Amer. Math. Monthly 101, 169-172, 1994a.Guy, R. K. "Sums of Squares." §C20 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138, 1994b.Pappas, T. "Triangular, Square & Pentagonal Numbers." The Joy of Mathematics. San Carlos, CA: Wide World Publ./Tetra, p. 214, 1989.Silverman, J. H. A Friendly Introduction to Number Theory. Englewood Cliffs, NJ: Prentice Hall, 1996.Sloane, N. J. A. Sequences A000326/M3818, A001318/M1336, A003679/M3323, and A133929 in "The On-Line Encyclopedia of Integer Sequences."

## Referenced on Wolfram|Alpha

Pentagonal Number

## Cite this as:

Weisstein, Eric W. "Pentagonal Number." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PentagonalNumber.html