TOPICS
Search

Multilinear Form


A multilinear form on a vector space V(F) over a field F is a map

 f:V(F)×...×V(F)->F
(1)

such that

 c·f(u_1,...,u_i,...,u_n)=f(u_1,...,c·u_i,...,u_n)
(2)

and

 f(u_1,...,u_i,...,u_n)+f(u_1,...,u_i^',...,u_n) 
 =f(u_1,...,u_i+u_i^',...,u_n)
(3)

for every c in F and any indexes i,j.

For example, the determinant of a square matrix of degree n is an n-linear form for the columns or rows of a matrix.


See also

Bilinear Form, Vector Space

This entry contributed by Marek Pomp

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

Cite this as:

Pomp, Marek. "Multilinear Form." From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. https://mathworld.wolfram.com/MultilinearForm.html

Subject classifications