TOPICS
Search

Monte Carlo Integration


In order to integrate a function over a complicated domain D, Monte Carlo integration picks random points over some simple domain D^' which is a superset of D, checks whether each point is within D, and estimates the area of D (volume, n-dimensional content, etc.) as the area of D^' multiplied by the fraction of points falling within D. Monte Carlo integration is implemented in the Wolfram Language as NIntegrate[f, ..., Method -> MonteCarlo].

Picking N randomly distributed points x_1, x_2, ..., x_N in a multidimensional volume V to determine the integral of a function f in this volume gives a result

 intfdV approx V<f>+/-Vsqrt((<f^2>-<f>^2)/N),
(1)

where

<f>=1/Nsum_(i=1)^(N)f(x_i)
(2)
<f^2>=1/Nsum_(i=1)^(N)f^2(x_i)
(3)

(Press et al. 1992, p. 295).


See also

Monte Carlo Method, Numerical Integration, Quasi-Monte Carlo Integration

Explore with Wolfram|Alpha

References

Hammersley, J. M. "Monte Carlo Methods for Solving Multivariable Problems." Ann. New York Acad. Sci. 86, 844-874, 1960.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Simple Monte Carlo Integration" and "Adaptive and Recursive Monte Carlo Methods." §7.6 and 7.8 in Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 295-299 and 306-319, 1992.Ueberhuber, C. W. "Monte Carlo Techniques." §12.4.4 in Numerical Computation 2: Methods, Software, and Analysis. Berlin: Springer-Verlag, pp. 124-125 and 132-138, 1997.Weinzierl, S. "Introduction to Monte Carlo Methods." 23 Jun 2000. http://arxiv.org/abs/hep-ph/0006269.

Referenced on Wolfram|Alpha

Monte Carlo Integration

Cite this as:

Weisstein, Eric W. "Monte Carlo Integration." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MonteCarloIntegration.html

Subject classifications