TOPICS
Search

Modular Group Gamma_0


Let q be a positive integer, then Gamma_0(q) is defined as the set of all matrices [a b; c d] in the modular group Gamma Gamma with c=0 (mod q). Gamma_0(q) is a subgroup of Gamma. For any prime p, the set

 R_Gamma union  union _(k=0)^(p-1)ST^k(R_Gamma)

is a fundamental region of the subgroup Gamma_0(q), where Stau=-1/tau and Ttau=tau+1 (Apostol 1997).


See also

Modular Group Gamma, Modular Group Lambda, Supersingular Prime

Explore with Wolfram|Alpha

References

Apostol, T. M. "The Subgroup Gamma_0(q)" and "Fundamental Region Gamma_0(q)." §4.2-4.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 75-78, 1997.

Cite this as:

Weisstein, Eric W. "Modular Group Gamma_0." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ModularGroupGamma0.html

Subject classifications