TOPICS
Search

Fundamental Region


Let G be a subgroup of the modular group Gamma. Then an open subset R_G of the upper half-plane H is called a fundamental region of G if

1. No two distinct points of R_G are equivalent under G,

2. If tau in H, then there is a point tau^' in the closure of R_G such that tau^' is equivalent to tau under G.

FundamentalRegion

A fundamental region R_Gamma of the modular group Gamma is given by tau in H such that |tau|>1 and |tau+tau^_|<1, illustrated above, where tau^_ is the complex conjugate of tau (Apostol 1997, p. 31). Borwein and Borwein (1987, p. 113) define the boundaries of the region slightly differently by including the boundary points with R[tau]<=0.


See also

Modular Group Gamma, Modular Group Lambda, Upper Half-Plane, Valence

Explore with Wolfram|Alpha

References

Apostol, T. M. "Fundamental Region." §2.3 in Modular Functions and Dirichlet Series in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 30-34, 1997.Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, pp. 112-113, 1987.

Referenced on Wolfram|Alpha

Fundamental Region

Cite this as:

Weisstein, Eric W. "Fundamental Region." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/FundamentalRegion.html

Subject classifications