For a triangle and three points , , and , one on each of its sides, the three Miquel circles are the circles passing through each polygon vertex and its neighboring side points (i.e., , , and ). According to Miquel's theorem, the Miquel circles are concurrent in a point known as the Miquel point. Similarly, there are Miquel circles for lines taken at a time.
Miquel Circles
See also
Clifford's Circle Theorem, Miquel Five Circles Theorem, Miquel Point, Miquel's Theorem, Miquel TriangleExplore with Wolfram|Alpha
References
Ayme, J.-L. "A Purely Synthetic Proof of the Droz-Farny Line Theorem." Forum Geom. 4, 219-224, 2004. http://forumgeom.fau.edu/FG2004volume4/FG200426index.html.Honsberger, R. Episodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., p. 81, 1995.Miquel, A. "Mémoire de Géométrie." Journal de mathématiques pures et appliquées de Liouville 1, 485-487, 1838.Referenced on Wolfram|Alpha
Miquel CirclesCite this as:
Weisstein, Eric W. "Miquel Circles." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MiquelCircles.html