A maximally dense unit-distance graph is a unit-distance graph having the maximum possible number of edges (i.e., maximum graph
density) for a given number of vertices. Finding a maximally dense unit-distance
graph is equivalent to solving the Erdős
unit distance problem.
Alexeev et al. (2025) determined all nonisomorphic maximally dense unit-distance graph up to 21 vertices. Their counts for , 2, ... are 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 2, 1, 1, 2, 1,
1, 7, 16, 3, 1, 5, ... (OEIS A385657).
The th
maximally dense unit-distance graph on vertices will be implemented in a future version of
the Wolfram Language as GraphData["MaximallyDenseUnitDistance",
n,
k].
Alexeev, B.; Mixon, D. G.; and Parshall, H. "The Erdős Unit Distance Problem for Small Point Sets." 12 Feb 2025. https://arxiv.org/abs/2412.11914.Agoston,
P. and Pálvőlgyi, D. "An Improved Constant Factor for the Unit Distance
Problem." Studia Sci. Math. Hungarica59, 40-57, 2022.Erdős,
P. "On Sets of Distances of Points." Amer. Math. Monthly53, 248-250,
1946.Schade, C. "Exakte Maximale Anzahlen Gleicher Abstände."
Thesis. Braunschweig, Germany: TU Braunschweig, 1993.Sloane, N. J. A.
Sequences A186705 and A385657
in "The On-Line Encyclopedia of Integer Sequences."Szemerédi,
S. "Erdős's Unit Distance Problem." In Open Problems in Mathematics.
Switzerland, Cham: Springer, 459-477, 2016.