TOPICS
Search

MRB Constant


MRBConstant

Consider the sequence of partial sums defined by

 s_n=sum_(k=1)^n(-1)^kk^(1/k).
(1)

As can be seen in the plot above, the sequence has two limit points at -0.812140... and 0.187859... (which are separated by exactly 1). The upper limit point is sometimes known as the MRB constant after the initials of its original investigator (Burns 1999; Plouffe).

Sums for the MRB constant are given by

S=lim_(N->infty)sum_(n=1)^(2N)(-1)^nn^(1/n)
(2)
=1+lim_(N->infty)sum_(n=1)^(2N+1)(-1)^nn^(1/n)
(3)
=sum_(k=1)^(infty)[(2k)^(1/(2k))-(2k-1)^(1/(2k-1))]
(4)
=sum_(k=1)^(infty)(-1)^k(k^(1/k)-1)
(5)
=0.1878596424...
(6)

(Finch 2003, p. 450; OEIS A037077).

The constant can also be given as a sum over derivatives of the Dirichlet eta function eta(x) as

S=-sum_(k=1)^(infty)((-1)^k)/(k!)eta^((k))(k)
(7)
=-sum_(k=1)^(infty)(c_k)/(k!)eta^((k))(0)
(8)

where

 c_k=sum_(i=1)^k(-1)^i(k; i)i^(k-i)
(9)

and eta^(k)(x)) denotes the kth derivative of eta(x) evaluated at x (Crandall 2012ab).

An integral expression for the constant is given by

 S=int_0^inftycsch(pit)I[(1+it)^(1/(1+it))]dt
(10)

(M. Burns, pers. comm., Jan. 21, 2020).

No closed-form expression is known for this constant (Finch 2003, p. 450).


See also

Glaisher-Kinkelin Constant, Power Tower, Steiner's Problem

Explore with Wolfram|Alpha

References

Burns, M. R. "An Alternating Series Involving n^(th) Roots." Unpublished note, 1999.Burns, M. R. "Try to Beat These MRB Constant Records!" http://community.wolfram.com/groups/-/m/t/366628.Crandall, R. E. "Unified Algorithms for Polylogarithm, L-Series, and Zeta Variants." 2012a. http://www.marvinrayburns.com/UniversalTOC25.pdf.Crandall, R. E. "The MRB Constant." §7.5 in Algorithmic Reflections: Selected Works. PSI Press, pp. 28-29, 2012b.Finch, S. R. Mathematical Constants. Cambridge, England: Cambridge University Press, p. 450, 2003.Plouffe, S. "MRB Constant." http://pi.lacim.uqam.ca/piDATA/mrburns.txt.Sloane, N. J. A. Sequences A037077 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

MRB Constant

Cite this as:

Weisstein, Eric W. "MRB Constant." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/MRBConstant.html

Subject classifications