TOPICS
Search

Kendall Operator


The operator tpartial/partialr that can be used to derive multivariate formulas for moments and cumulants from corresponding univariate formulas.

For example, to derive the expression for the multivariate central moments mu_(4-r,r) in terms of multivariate cumulants, begin with

 mu_4=3kappa_2^2+kappa_4.
(1)

Now rewrite each variable x_n as x(r^n) to obtain

 mu(r^4)=3kappa(r^2)^2+kappa(r^4).
(2)

Now differentiate each side with respect to r, where

 4r^3mu^'(r^4)=12kappa(r^2)kappa^'(r^2)+4r^3kappa^'(r^4),
(3)

and wherever there is a term with a derivative x^'(r,t), remove the derivative and replace the argument with t times itself, so

 4r^3mu(r^3t)=12kappa(r^2)kappa(rt)+4r^3kappa(r^3t).
(4)

Now set any rs appearing as coefficients to 1, so

 4mu(r^3t)=12kappa(r^2)kappa(rt)+4kappa(r^3t).
(5)

Dividing through by 4 gives

 mu(r^3t)=3kappa(r^2)kappa(rt)+kappa(r^3t).
(6)

Finally, set any coefficients powers of t appearing as term coefficients to 1 and interpret the resulting terms x(r^m,t^n) as x_(m,n), so that the above gives

 mu_(3,1)=3kappa_(2,0)kappa_(1,1)+kappa_(3,1).
(7)

This procedure can be repeated up to n times, where n is the subscript of the univariate case.

Iterating the above procedure gives

mu(r^4)=3kappa(r^2)^2+kappa(r^4)
(8)
mu(r^3t)=3kappa(r^2)kappa(rt)+kappa(r^3t)
(9)
tmu(r^2t^2)=2kappa(rt)^2+tkappa(r^2)kappa(t^2)+tkappa(r^2t^2)
(10)
t^3mu(rt^3)=3tkappa(rt)kappa(t^2)+t^3kappa(rt^3)
(11)
t^6mu(t^4)=3t^2kappa(t^2)^2+t^6kappa(t^4),
(12)

giving the identities

mu_(4,0)=3kappa_(2,0)^2+kappa_(4,0)
(13)
mu_(3,1)=3kappa_(1,1)kappa_(2,0)+kappa_(3,1)
(14)
mu_(2,2)=2kappa_(1,1)^2+kappa_(0,2)kappa_(2,0)+kappa_(2,2)
(15)
mu_(1,3)=3kappa_(0,2)kappa_(1,1)+kappa_(1,3)
(16)
mu_(0,4)=3kappa_(0,2)^2+kappa_(0,4).
(17)

See also

Central Moment, Kurtosis, Raw Moment

Explore with Wolfram|Alpha

References

Kendall, M. G. "The Derivation of Multivariate Sampling Formulae from Univariate Formulae by Symbolic Operation." Ann. Eugenics 10, 392-402, 1940.Stuart, A.; and Ord, J. K. Kendall's Advanced Theory of Statistics, Vol. 1: Distribution Theory, 6th ed. New York: Oxford University Press, 1998.

Referenced on Wolfram|Alpha

Kendall Operator

Cite this as:

Weisstein, Eric W. "Kendall Operator." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/KendallOperator.html

Subject classifications