TOPICS
Search

Kaplan-Yorke Map


x_(n+1)=2x_n
(1)
y_(n+1)=alphay_n+cos(4pix_n),
(2)

where x_n, y_n are computed mod 1 (Kaplan and Yorke 1979). The Kaplan-Yorke map with alpha=0.2 has correlation exponent 1.42+/-0.02 (Grassberger and Procaccia 1983) and capacity dimension 1.43 (Russell et al. 1980).


Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Grassberger, P. and Procaccia, I. "Measuring the Strangeness of Strange Attractors." Physica D 9, 189-208, 1983.Kaplan, J. L. and Yorke, J. A. In Functional Differential Equations and Approximations of Fixed Points: Proceedings, Bonn, July 1978 (Ed. H.-O. Peitgen and H.-O. Walther). Berlin: Springer-Verlag, p. 204, 1979.Russell, D. A.; Hanson, J. D.; and Ott, E. "Dimension of Strange Attractors." Phys. Rev. Let. 45, 1175-1178, 1980.

Referenced on Wolfram|Alpha

Kaplan-Yorke Map

Cite this as:

Weisstein, Eric W. "Kaplan-Yorke Map." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Kaplan-YorkeMap.html

Subject classifications