Let
be a real entire function of
the form
 |
(1)
|
where the
s
are positive and satisfy Turán's
inequalities
 |
(2)
|
for
,
2, .... The Jensen polynomial
associated with
is then given by
 |
(3)
|
where
is a binomial coefficient.
Explore with Wolfram|Alpha
References
Csordas, G.; Varga, R. S.; and Vincze, I. "Jensen Polynomials with Applications to the Riemann
-Function." J. Math. Anal. Appl. 153,
112-135, 1990.Referenced on Wolfram|Alpha
Jensen Polynomial
Cite this as:
Weisstein, Eric W. "Jensen Polynomial."
From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/JensenPolynomial.html
Subject classifications