TOPICS
Search

Incentral Circle


IncentralCircle

The incentral circle is the circumcircle of the incentral triangle. It has radius

 R_I=(sqrt(abcf(a,b,c)f(b,c,a)f(c,a,b)))/(8Delta(a+b)(a+c)(b+c)),
(1)

where Delta is the area of the reference triangle and

 f(a,b,c)=a^3-ba^2+ca^2-b^2a-c^2a-3bca+b^3-c^3-bc^2+b^2c.
(2)

Its center function is a sixth-order polynomial that does not correspond to any Kimberling center.

Its circle function is

 l=-(-a^3+b^3+c^3+(-a+b+c)(ab+ac+bc))/(2(a+b)(a+c)(b+c)),
(3)

corresponding to Kimberling center X_(191).

It passes through Kimberling centers X_i for i=11 (Feuerbach point F), 115 (center of the Kiepert hyperbola), and 3024.


See also

Anticomplementary Triangle, Central Circle

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Incentral Circle." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/IncentralCircle.html

Subject classifications