The icosidodecadodecahedron is the uniform polyhedron with Maeder index 44 (Maeder 1997), Wenninger index 83 (Wenninger 1989), Coxeter index 56 (Coxeter et al. 1954), and Har'El index 49 (Har'El 1993). It has Wythoff symbol 5/35|3 and its faces are 20{6}+12{5/2}+12{5}.

The icosidodecadodecahedron is implemented in the Wolfram Language as UniformPolyhedron[83], UniformPolyhedron["Icosidodecadodecahedron"], UniformPolyhedron[{"Coxeter", 56}], UniformPolyhedron[{"Kaleido", 49}], UniformPolyhedron[{"Uniform", 44}], or UniformPolyhedron[{"Wenninger", 83}]. It is implemented in the Wolfram Language as PolyhedronData["Icosidodecadodecahedron"].

Its circumradius for unit edge length is


Its dual polyhedron is the medial icosacronic hexecontahedron.

See also

Uniform Polyhedron

Explore with Wolfram|Alpha


Coxeter, H. S. M.; Longuet-Higgins, M. S.; and Miller, J. C. P. "Uniform Polyhedra." Phil. Trans. Roy. Soc. London Ser. A 246, 401-450, 1954.Har'El, Z. "Uniform Solution for Uniform Polyhedra." Geometriae Dedicata 47, 57-110, 1993.Maeder, R. E. "44: Icosidodecadodecahedron." 1997., M. J. "Icosidodecadodecahedron." Model 83 in Polyhedron Models. Cambridge, England: Cambridge University Press, pp. 128-129, 1989.

Referenced on Wolfram|Alpha


Cite this as:

Weisstein, Eric W. "Icosidodecadodecahedron." From MathWorld--A Wolfram Web Resource.

Subject classifications