Given two randomly chosen 
 integer matrices,
 what is the probability 
 that the corresponding determinants
 are relatively prime? Hafner et al. (1993)
 showed that
![D(n)=product_(k=1)^infty{1-[1-product_(j=1)^n(1-p_k^(-j))]^2},](/images/equations/Hafner-Sarnak-McCurleyConstant/NumberedEquation1.svg)  | 
 
(1)
 
 | 
 
where 
 is the 
th
 prime.
The case 
 is just the probability that two random integers
 are relatively prime,
  | 
 
(2)
 
 | 
 
(OEIS A059956). No analytic results are known for 
.
 Approximate values for the first few 
 are given by
Vardi (1991) computed the limit
  | 
 
(7)
 
 | 
 
(A085849). The speed of convergence is roughly 
 (Flajolet and Vardi 1996).
 
See also
Integer Matrix, 
Relatively
Prime
Explore with Wolfram|Alpha
References
Finch, S. R. "Hafner-Sarnak-McCurley Constant." §2.5 in Mathematical
 Constants. Cambridge, England: Cambridge University Press, pp. 110-112,
 2003.Flajolet, P. and Vardi, I. "Zeta Function Expansions of Classical
 Constants." Unpublished manuscript. 1996. http://algo.inria.fr/flajolet/Publications/landau.ps.Hafner,
 J. L.; Sarnak, P.; and McCurley, K. "Relatively Prime Values of Polynomials."
 In A
 Tribute to Emil Grosswald: Number Theory and Related Analysis (Ed. M. Knopp
 and M. Seingorn). Providence, RI: Amer. Math. Soc., 1993.Sloane,
 N. J. A. Sequences  A059956 and A085849 in "The On-Line Encyclopedia of Integer
 Sequences."Vardi, I. Computational
 Recreations in Mathematica. Redwood City, CA: Addison-Wesley, 1991.Referenced
 on Wolfram|Alpha
Hafner-Sarnak-McCurley Constant
Cite this as:
Weisstein, Eric W. "Hafner-Sarnak-McCurley
Constant." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/Hafner-Sarnak-McCurleyConstant.html
Subject classifications