The golden ratio has decimal expansion
(OEIS A001622). It can be computed to digits of precision in 24 CPU-minutes
on modern hardware and was computed to
decimal digits by A. J. Yee on Jul. 8,
2010.
The Earls sequence (starting position of copies of the digit
) for
is given for
, 2, ... by 2, 62, 158, 1216, 72618, 2905357, 7446157, 41398949,
1574998166, ... (OEIS A224844).
The digit sequence 0123456789 does not occur in the first digits of
, but 9876543210 does, starting at position
(E. Weisstein, Jul. 22, 2013).
Phi-primes, i.e., -constant primes occur
for 7, 13, 255, 280, 97241, ... (OEIS A064119)
decimal digits.
The starting positions of the first occurrence of , 1, 2, ... in the decimal expansion of
(including the initial 1 and counting it as the first digit)
are 5, 1, 20, 6, 12, 23, 2, 11, 4, 8, 232, ... (OEIS A088577).
Scanning the decimal expansion of until all
-digit numbers have occurred, the last 1-, 2-, ... digit numbers
appearing are 5, 55, 515, 0092, 67799, 290503, ... (OEIS A000000),
which end at digits 23, 770, 5819, 93910, 1154766, 13192647, ... (OEIS A000000).
It is not known if
is normal, but the following table giving the counts
of digits in the first
terms shows that the decimal digits are very uniformly
distributed up to at least
.
OEIS | 10 | 100 | |||||||||
0 | A000000 | 1 | 11 | 100 | 1020 | 9986 | 99805 | 1001143 | 10003332 | 100007840 | 1000031042 |
1 | A000000 | 1 | 9 | 105 | 1062 | 9963 | 99993 | 1000118 | 10000255 | 99999864 | 999990982 |
2 | A000000 | 0 | 11 | 116 | 994 | 9950 | 99529 | 1000776 | 10002116 | 100002106 | 1000005392 |
3 | A000000 | 2 | 9 | 88 | 1039 | 10079 | 99833 | 999794 | 9999184 | 99979352 | 999978183 |
4 | A000000 | 0 | 12 | 92 | 976 | 10041 | 100151 | 999367 | 9998797 | 99995481 | 999952470 |
5 | A000000 | 0 | 5 | 84 | 988 | 10016 | 100067 | 999725 | 9996151 | 99999934 | 1000032985 |
6 | A000000 | 1 | 9 | 104 | 918 | 9975 | 100328 | 999455 | 9996149 | 100004208 | 1000014191 |
7 | A000000 | 1 | 10 | 113 | 1025 | 9988 | 100160 | 1000852 | 9997524 | 100018237 | 1000023870 |
8 | A000000 | 3 | 15 | 105 | 987 | 10008 | 100236 | 1000059 | 10005419 | 99995223 | 999976728 |
9 | A000000 | 1 | 9 | 93 | 991 | 9994 | 99898 | 998711 | 10001073 | 99997755 | 999994157 |