The locus of a point (or the envelope of a line) fixed in relation to a curve
which slides between fixed curves. For
example, if
is a line segment and
a point on the line segment, then
describes an ellipse when
slides so as to touch two orthogonal
straight lines. The glissette of the line
segment
itself is, in this case, an astroid.
Glissette
See also
RouletteExplore with Wolfram|Alpha
References
Besant, W. H. Notes on Roulettes and Glissettes, 2nd enl. ed. Cambridge, England: Deighton, Bell & Co., 1890.Lockwood, E. H. "Glissettes." Ch. 20 in A Book of Curves. Cambridge, England: Cambridge University Press, pp. 160-165, 1967.Yates, R. C. "Glissettes." A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards, pp. 108-112, 1952.Referenced on Wolfram|Alpha
GlissetteCite this as:
Weisstein, Eric W. "Glissette." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Glissette.html