TOPICS
Search

Gerver Sofa


GerverSofa

Gerver (1992) found a sofa with larger area than that of the optimal Hammersley sofa that solves the moving sofa problem. Gerver also provided arguments indicating that it is either optimal or close to it. The boundary of Gerver's sofa is a complicated shape composed of 3 straight line segments and 15 curved pieces, each of which is described by an analytic expression. It is illustrated above (Romik 2016, 2018).

Gerver sofa moving around a corner

An animation of the Gerver sofa rounding the turn is shown above (Romik 2016).

The area of the Gerver sofa can be given by defining the constants A, B, phi, and theta by solving

A(costheta-cosphi)-2Bsinphi+(theta-phi-1)costheta-sintheta+cosphi+sinphi=0
(1)
A(3sintheta+sinphi)-2Bcosphi+3(theta-phi-1)sintheta+3costheta-sinphi+cosphi=0
(2)
Acosphi-(sinphi+1/2-1/2cosphi+Bsinphi)=0
(3)
(A+1/2pi-phi-theta)-[B-1/2(theta-phi)(1+A)-1/4(theta-phi)^2]=0
(4)

(Gerver 1992, Finch 2003). This gives

A=0.094426560843653...
(5)
B=1.399203727333547...
(6)
phi=0.039177364790084...
(7)
theta=0.681301509382725...
(8)

(Gerver 1992, Finch 2003).

MovingSofaFunctions

Now define

 r(alpha)={1/2   for 0<=alpha<phi; 1/2(1+A+alpha-phi)   for phi<=alpha<theta; A+alpha-phi   for theta<=alpha<1/2pi-theta; B-1/2(1/2pi-alpha-phi)(1+A)-1/4(1/2pi-alpha-phi)^2   for 1/2pi-theta<=alpha<1/2pi-phi,
(9)

where

s(alpha)=1-r(alpha)
(10)
u(alpha)={B-1/2(alpha-phi)(1+A) for phi<=alpha<theta-1/4(alpha-phi)^2; A+1/2pi-phi-alpha for theta<=alpha<1/4pi
(11)
D_u(alpha)=(du)/(dalpha)
(12)
={-1/2(1+A)-1/2(alpha-phi) for phi<=alpha<=theta; -1 if theta<=alpha<1/4pi
(13)

(Gerver 1992, Finch 2003).

Finally, define the functions

y_1(alpha)=1-int_0^alphar(t)sintdt
(14)
y_2(alpha)=1-int_0^alphas(t)sintdt
(15)
y_3(alpha)=1-int_0^alphas(t)sintdt-u(alpha)sinalpha.
(16)

The area of the optimal sofa is then given by

S=2int_0^(pi/2-phi)y_1(alpha)r(alpha)cosalphadalpha+2int_0^thetay_2(alpha)s(alpha)cosalphadalpha+2int_phi^(pi/4)y_3(alpha)[u(alpha)sinalpha-D_u(alpha)cosalpha-s(alpha)cosalpha]dalpha
(17)
=2.21953166887196...
(18)

(OEIS A128463; Gerver 1992, Finch 2003), a value slightly larger than the area of 2.207416 (OEIS A086118) for the maximal Hammersley sofa and which can be called the moving sofa constant.

Assuming convex trajectories and envelopes, Deng (2024) used the calculus of variations to formulate an integral functional on a set of parametric equations for curves that determined the sofa shape by solving the Euler-Lagrange differential equations Using numerical methods, this gave a shape with area 2.2195316, consistent with Gerver's sofa. Baek (2024) showed that Gerver's construction attains the maximum area 2.2195...using a proof does not require computer assistance except for numerical computations that can be done on a scientific calculator.


See also

Hammersley Sofa, Moving Sofa Constant, Moving Sofa Problem

Explore with Wolfram|Alpha

References

Baek, J. "Optimality of Gerver's Sofa." 29 Nov 2024. https://arxiv.org/abs/2411.19826.Croft, H. T.; Falconer, K. J.; and Guy, R. K. Unsolved Problems in Geometry. New York: Springer-Verlag, 1994.Deng, Z. "Calculus of Variation Approach and Euler-Lagrange Equations for the Moving Sofa Problem." Aug. 2024. https://community.wolfram.com/groups/-/m/t/3234695.Deng, Z. "Solving Moving Sofa Problem Using Calculus of Variations." 2 Jul 2024. https://arxiv.org/abs/2407.02587.Finch, S. R. "Moving Sofa Constant." §8.12 in Mathematical Constants. Cambridge, England: Cambridge University Press, pp. 519-523, 2003.Gerver, J. L. "On Moving a Sofa Around a Corner." Geometriae Dedicata 42, 267-283, 1992.Romik, D. "MovingSofas: A Companion Mathematica Package to the Paper "Differential Equations and Exact Solutions in the Moving Sofa Problem."' Package version: 1.3. July 10, 2016. https://www.math.ucdavis.edu/~romik/data/uploads/software/movingsofas-v1.3.nb.Romik, D. "Differential Equations and Exact Solutions in the Moving Sofa Problem." Exper. Math. 27, 316-330, 2018.Romik, D. "Dan Romik's Home Page: The Moving Sofa Problem." https://www.math.ucdavis.edu/~romik/movingsofa/.Sloane, N. J. A. Sequences A086118 and A128463 in "The On-Line Encyclopedia of Integer Sequences."

Cite this as:

Weisstein, Eric W. "Gerver Sofa." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/GerverSofa.html

Subject classifications