Seeks to obtain the best numerical estimate of an integral by picking optimal abscissas at which to evaluate the function . The fundamental
theorem of Gaussian quadrature states that the optimal abscissas
of the -point
Gaussian quadrature formulas are precisely the roots
of the orthogonal polynomial for the same interval
and weighting function . Gaussian quadrature
is optimal because it fits all polynomials up to degree
exactly. Slightly less optimal fits are obtained from Radau
quadrature and Laguerre-Gauss quadrature .
To determine the weights corresponding to the Gaussian abscissas , compute a Lagrange
interpolating polynomial for by letting
(1)
(where Chandrasekhar 1967 uses instead of ), so
(2)
Then fitting a Lagrange interpolating polynomial through the points gives
(3)
for arbitrary points . We are therefore looking for a set of points and weights such that for a weighting
function ,
with weight
(6)
The weights
are sometimes also called the Christoffel numbers
(Chandrasekhar 1967). For orthogonal polynomials with , ..., ,
(7)
(Hildebrand 1956, p. 322), where is the coefficient of in , then
where
(10)
Using the relationship
(11)
(Hildebrand 1956, p. 323) gives
(12)
(Note that Press et al. 1992 omit the factor .) In Gaussian quadrature, the weights are all positive . The error is given by
where
(Hildebrand 1956, pp. 320-321).
Other curious identities are
(15)
and
(Hildebrand 1956, p. 323).
In the notation of Szegö (1975), let be an ordered set of points in , and let , ..., be a set of real numbers .
If
is an arbitrary function on the closed interval , write the Gaussian quadrature as
(18)
Here
are the abscissas and are the Cotes numbers .
See also Chebyshev Quadrature ,
Chebyshev-Gauss Quadrature ,
Chebyshev-Radau
Quadrature ,
Fundamental
Theorem of Gaussian Quadrature ,
Hermite-Gauss
Quadrature ,
Jacobi-Gauss Quadrature ,
Laguerre-Gauss Quadrature ,
Legendre-Gauss
Quadrature ,
Lobatto Quadrature ,
Radau
Quadrature
Explore with Wolfram|Alpha
References Abramowitz, M. and Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 887-888, 1972. Acton, F. S. Numerical
Methods That Work, 2nd printing. Washington, DC: Math. Assoc. Amer., p. 103,
1990. Arfken, G. "Appendix 2: Gaussian Quadrature." Mathematical
Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 968-974,
1985. Beyer, W. H. CRC
Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 461,
1987. Chandrasekhar, S. An
Introduction to the Study of Stellar Structure. New York: Dover, 1967. Gauss,
C. F. "Methodus nova integralium valores per approximationem inveniendi."
Commentationes Societatis regiae scientarium Gottingensis recentiores 3 ,
39-76, 1814. Reprinted in Werke,
Vol. 3. New York: George Olms, p. 163, 1981. Golub,
G. H. and Welsh, J. H. "Calculation of Gauss Quadrature Rules."
Math. Comput. 23 , 221-230, 1969. Hildebrand, F. B.
Introduction
to Numerical Analysis. New York: McGraw-Hill, pp. 319-323, 1956. Press,
W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
"Gaussian Quadratures and Orthogonal Polynomials." §4.5 in Numerical
Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 140-155, 1992. Stroud, A. H.
and Secrest, D. Gaussian
Quadrature Formulas. Englewood Cliffs, NJ: Prentice-Hall, 1966. Szegö,
G. Orthogonal
Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., pp. 37-48 and
340-349, 1975. Whittaker, E. T. and Robinson, G. "Gauss's Formula
of Numerical Integration." §80 in The
Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. New
York: Dover, pp. 152-163, 1967. Referenced on Wolfram|Alpha Gaussian Quadrature
Cite this as:
Weisstein, Eric W. "Gaussian Quadrature."
From MathWorld --A Wolfram Web Resource. https://mathworld.wolfram.com/GaussianQuadrature.html
Subject classifications