TOPICS
Search

Exeter Point


ExeterPoint

Define A^' to be the point (other than the polygon vertex A) where the triangle median through A meets the circumcircle of ABC, and define B^' and C^' similarly. Then the Exeter point is the perspector of the triangle A^'B^'C^' and the tangential triangle. It has triangle center function

 alpha=a(b^4+c^4-a^4)

and is Kimberling center X_(22).


Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Kimberling, C. "Central Points and Central Lines in the Plane of a Triangle." Math. Mag. 67, 163-187, 1994.Kimberling, C. "Triangle Centers and Central Triangles." Congr. Numer. 129, 1-295, 1998.Kimberling, C. "Exeter Point." http://faculty.evansville.edu/ck6/tcenters/recent/exeter.html.Kimberling, C. "Encyclopedia of Triangle Centers: X(22)=Exeter Point." http://faculty.evansville.edu/ck6/encyclopedia/ETC.html#X22.Kimberling, C. and Lossers, O. P. "Problem 6557 and Solution." Amer. Math. Monthly 97, 535-537, 1990.

Referenced on Wolfram|Alpha

Exeter Point

Cite this as:

Weisstein, Eric W. "Exeter Point." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ExeterPoint.html

Subject classifications