TOPICS
Search

Danzer Configuration


The Danzer configuration is a 35_4 self-dual configuration of 35 lines and 35 points in which 4 points lie on each line and 4 lines pass through each point.

The Levi graph of the Danzer configuration may be called the Danzer graph (Boben et al. 2015).


See also

Configuration, Danzer Graph, Levi Graph, Orchard-Planting Problem

Explore with Wolfram|Alpha

References

Boben, M.; Gévay, G. Pisanski, T. "Danzer's Configuration Revisited." Adv. Geom. 15, 393-408, 2015.Gévay, G. "Pascal's Triangle of Configurations." In Discrete Geometry and Symmetry (Ed. M. D. E. Conder, A. Deza, and A. I. Weiss). Springer, pp. 181-199, 2018.Grünbaum, B. "Musing on an Example of Danzer's." Europ. J. Combin. 29, 1910-1918, 2018.Mütze, T. "Proof of the Middle Levels Conjecture." Proc. Lond. Math. Soc. 112, 677-713, 2016.

Cite this as:

Weisstein, Eric W. "Danzer Configuration." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/DanzerConfiguration.html

Subject classifications