Cubic Semisymmetric Graph

A cubic semisymmetric graph is a graph that is both cubic (i.e., regular of degree 3) and semisymmetric (i.e., edge- but not vertex-transitive).


The four smallest cubic semisymmetric graphs are illustrated above. The smallest of these is Gray graph on 54 vertices, the next smallest is the Iofinova-Ivanov graph on 110 vertices (Iofinova and Ivanov 2002, Marušič et al. 2005), the third is the Ljubljana graph (Conder et al. 2002), and the fourth is the Tutte 12-cage.

Some cubic semisymmetric graphs are summarized in the following table.

See also

Cubic Graph, Iofinova-Ivanov Graphs, Ljubljana Graph, Semisymmetric Graph, Tutte 12-Cage

Explore with Wolfram|Alpha


Bouwer, I. A. "On Edge But Not Vertex Transitive Regular Graphs." J. Combin. Th. Ser. B 12, 32-40, 1972.Conder, M.; Malnič, A.; Marušič, D.; Pisanski, T.; and Potočnik, P. "The Ljubljana Graph." 2002., A. V. "On Edge But Not Vertex Transitive Regular Graphs." In Combinatorial Design Theory (Ed. C. J. Colbourn and R. Mathon). Amsterdam, Netherlands: North-Holland, pp. 273-285, 1987.Iofinova, M. E. and Ivanov, A. A. "Bi-Primitive Cubic Graphs." In Investigations in the Algebraic Theory of Combinatorial Objects. pp. 123-134, 2002. (Vsesoyuz. Nauchno-Issled. Inst. Sistem. Issled., Moscow, pp. 137-152, 1985.)Marušič, D.; Pisanski, T.; and Wilson, S. "The Genus of the Gray Graph is 7." Europ. J. Combin. 26, 377-385, 2005.

Referenced on Wolfram|Alpha

Cubic Semisymmetric Graph

Cite this as:

Weisstein, Eric W. "Cubic Semisymmetric Graph." From MathWorld--A Wolfram Web Resource.

Subject classifications