The conjugate gradient method is an algorithm  for finding the nearest local minimum  of a function of gradient  of the
 function can be computed. It uses conjugate directions instead of the local gradient 
 for going downhill. If the vicinity of the minimum  has
 the shape of a long, narrow valley, the minimum  is reached
 in far fewer steps than would be the case using the method
 of steepest descent .
For a discussion of the conjugate gradient method on vector and shared memory computers, see Dongarra et al.  (1991). For discussions of the method for more general
 parallel architectures, see Demmel et al.  (1993) and Ortega (1988) and the
 references therein.
 
See also Biconjugate Gradient Method , 
Biconjugate Gradient Stabilized
 Method , 
Chebyshev Iteration , 
Conjugate
 Gradient Method on the Normal Equations , 
Conjugate
 Gradient Squared Method , 
Generalized
 Minimal Residual Method , 
Gradient , 
Linear
 System of Equations , 
Local Minimum , 
Method
 of Steepest Descent , 
Minimal Residual Method ,
 
Minimum , 
Quasi-Minimal
 Residual Method , 
Stationary Iterative
 Method , 
Symmetric LQ Method 
Portions of this entry contributed by Noel Black and Shirley Moore, adapted from Barrett et al. (1994)   (author's link ) 
Explore with Wolfram|Alpha 
References Axelsson, O. and Barker, A. Finite Element Solution of Boundary Value Problems: Theory and Computation.  Barrett, R.; Berry, M.; Chan, T. F.;
 Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; and van
 der Vorst, H. Templates
 for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd ed. http://www.netlib.org/linalg/html_templates/Templates.html . Brodile,
 K. W. "Unconstrained Minimization." §3.1.7 in The
 State of the Art in Numerical Analysis  Bulirsch, R. and Stoer,
 J. "The Conjugate-Gradient Method of Hestenes and Stiefel." §8.7 in
 Introduction
 to Numerical Analysis.  Concus,
 P.; Golub, G.; and O'Leary, D. "Generalized Conjugate Gradient Method for the
 Numerical Solution of Elliptic Partial Differential Equations." In Sparse
 Matrix Computations  Demmel, J.; Heath, M.; and van der Vorst,
 H. "Parallel Numerical Linear Algebra." In Acta Numerica, Vol. 2. 
 Cambridge, England: Cambridge University Press, 1993. Dongarra, J.; Duff,
 I.; Sorensen, D.; and van der Vorst, H. Solving
 Linear Systems on Vector and Shared Memory Computers.  Golub, G. and O'Leary, D. "Some History of the Conjugate Gradient
 and Lanczos Methods." SIAM Rev.  31 , 50-102, 1989. Golub,
 G. H. and Van Loan, C. F. Matrix
 Computations, 3rd ed.  Hackbusch, W. Iterative
 Lösung großer schwachbesetzter Gleichungssysteme.  Kaniel, S. "Estimates for Some Computational Techniques
 in Linear Algebra." Math. Comput.  20 , 369-378, 1966. Ortega,
 J. M. Introduction
 to Parallel and Vector Solution of Linear Systems.  Polak, E. "Conjugate Gradient in Rn" in Computational
 Methods in Optimization." §2.3 in Computational
 Methods in Optimization.  Press,
 W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
 Numerical
 Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed.  Reid, J. "On
 the Method of Conjugate Gradients for the Solution of Large Sparse Systems of Linear
 Equations." In Large
 Sparse Sets of Linear Equations: Proceedings of the Oxford conference of the Institute
 of Mathematics and Its Applications held in April, 1970  van der Sluis, A. and
 van der Vorst, H. "The Rate of Convergence of Conjugate Gradients." Numer.
 Math.  48 , 543-560, 1986. Referenced on Wolfram|Alpha Conjugate Gradient Method 
Cite this as: 
Black, Noel ; Moore, Shirley ; and Weisstein, Eric W.   "Conjugate
 Gradient Method." From MathWorld https://mathworld.wolfram.com/ConjugateGradientMethod.html 
Subject classifications