TOPICS
Search

Chaos Game


ChaosGame

An algorithm originally described by Barnsley in 1988. Pick a point at random inside a regular n-gon. Then draw the next point a fraction r of the distance between it and a polygon vertex picked at random. Continue the process (after throwing out the first few points). The result of this "chaos game" is sometimes, but not always, a fractal. The results of the chaos game are shown above for several values of (n,r).

ChaosGameHalf

The above plots show the chaos game for 10000 points in the regular 3-, 4-, 5-, and 6-gons with r=1/2. The case (n,r)=(4,1/2) gives the interior of a square with all points visited with equal probability.

ChaosGameSquares

The above plots show the chaos game for 10000 points in the square with r=0.25, 0.4, 0.5, 0.6, 0.75, and 0.9.


See also

Barnsley's Fern, Sierpiński Sieve

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Borwein, J. and Bailey, D. "Pascal's Triangle." §2.1 in Mathematics by Experiment: Plausible Reasoning in the 21st Century. Wellesley, MA: A K Peters, pp. 47-48, 2003.Barnsley, M. F. and Rising, H. Fractals Everywhere, 2nd ed. Boston, MA: Academic Press, 1993.Bogomolny, A. "Sierpinski Gasket Via Chaos Game." http://www.cut-the-knot.org/Curriculum/Geometry/SierpinskiChaosGame.shtml.Dickau, R. M. "The Chaos Game." http://mathforum.org/advanced/robertd/chaos_game.html.Jeffrey, H. J. "Chaos Game Representation of Genetic Sequences." Nucleic Acids Res. 18, 2163-2170, 1990.Jeffrey, H. J. "Chaos Game Visualization of Sequences." Comput. & Graphics 16, 25-33, 1992. Reprinted in Chaos and Fractals, A Computer Graphical Journey: Ten Year Compilation of Advanced Research (Ed. C. A. Pickover). Amsterdam, Netherlands: Elsevier, pp. 5-13, 1998.Peitgen, H.-O.; Jürgens, H.; and Saupe, D. Fractals for the Classroom, Part 1: Introduction to Fractals and Chaos. New York: Springer-Verlag, pp. 41-43, 1992.Pickover, C. A. (Ed.). Fractal Horizons: The Future Use of Fractals. New York: St. Martin's Press, pp. 27, 57-59, and 169-171, 1996.Wagon, S. Mathematica in Action, 2nd ed. New York: Springer-Verlag, pp. 226-239, 1999.

Referenced on Wolfram|Alpha

Chaos Game

Cite this as:

Weisstein, Eric W. "Chaos Game." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/ChaosGame.html

Subject classifications