TOPICS
Search

Cassini Surface


CassiniSurface
CassiniSurfacePOV

The quartic surface obtained by replacing the constant b in the equation of the Cassini ovals with b=z, obtaining

 [(x-a)^2+y^2][(x+a)^2+y^2]=z^4.
(1)

As can be seen by letting y=0 to obtain

 (x^2-a^2)^2=z^4
(2)
 x^2+z^2=a^2,
(3)

the intersection of the surface with the y=0 plane is a circle of radius a.

The Gaussian curvature of the surface is given implicitly by

 K(x,y,z)=(a^2(a^2+x^2-y^2))/(z^2[a^4+2a^2(-x^2+y^2)-2z^2(x^2+y^2+z^2)]).
(4)
TorusPlaneIntersection

Let a torus of tube radius a be cut by a plane perpendicular to the plane of the torus's centroid. Call the distance of this plane from the center of the torus hole r, let a=r, and consider the intersection of this plane with the torus as r is varied. The resulting curves are Cassini ovals, and the surface having these curves as cross sections is the Cassini surface

 (x+2+z^2+c^2)-4c^2x^2=4c^2r^2,
(5)

which has a scaled r^2 on the right side instead of z^4.


See also

Cassini Ovals, Torus

Explore with Wolfram|Alpha

References

Fischer, G. (Ed.). Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Kommentarband. Braunschweig, Germany: Vieweg, p. 20, 1986.Fischer, G. (Ed.). Plate 51 in Mathematische Modelle aus den Sammlungen von Universitäten und Museen, Bildband. Braunschweig, Germany: Vieweg, p. 51, 1986.

Cite this as:

Weisstein, Eric W. "Cassini Surface." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/CassiniSurface.html

Subject classifications