TOPICS
Search

Bring-Jerrard Quintic Form


A Tschirnhausen transformation can be used to algebraically transform a general quintic equation to the form

 z^5+c_1z+c_0=0.
(1)

In practice, the general quintic is first reduced to the principal quintic form

 y^5+b_2y^2+b_1y+b_0=0
(2)

before the transformation is done. Then, we require that the sum of the third powers of the roots vanishes, so s_3(y_j)=0. We assume that the roots z_i of the Bring-Jerrard quintic are related to the roots y_i of the principal quintic form by

 z_i=alphay_i^4+betay_i^3+gammay_i^2+deltay_i+epsilon.
(3)

In a similar manner to the principal quintic form transformation, we can express the coefficients c_j in terms of the b_j.


See also

Bring Quintic Form, Principal Quintic Form, Quintic Equation

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Grunert, J. A. "VIII. Miscellen von dem Herausgeber." Archiv der Math. Phys. 41, 105-112, 1864.Klein, F. "Über die Transformation der elliptischen Funktionen und die Auflösung der Gleichungen fünften Grades." Math. Ann. 14, 111-172, 1878-79.Tortolini, B. "Rivista bibliografica sopra a transformazione del Sig. Jerrard per l'equazioni di quinto grado." Annali di Mat. pura appl. 6, 33-42, 1864.

Referenced on Wolfram|Alpha

Bring-Jerrard Quintic Form

Cite this as:

Weisstein, Eric W. "Bring-Jerrard Quintic Form." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Bring-JerrardQuinticForm.html

Subject classifications