TOPICS
Search

Breeder


A pair of positive integers (a_1,a_2) such that the equations

 a_1+a_2x=sigma(a_1)=sigma(a_2)(x+1)
(1)

have a positive integer solution x, where sigma(n) is the divisor function. If x is prime, then (a_1,a_2x) is an amicable pair (te Riele 1986). (a_1,a_2) is a "special" breeder if

a_1=au
(2)
a_2=a,
(3)

where a and u are relatively prime, (a,u)=1. If regular amicable pairs of type (i,1) with i>=2 are of the form (au,ap) with p prime, then (au,a) are special breeders (te Riele 1986).


See also

Amicable Pair

Explore with Wolfram|Alpha

References

te Riele, H. J. J. "Computation of All the Amicable Pairs Below 10^(10)." Math. Comput. 47, 361-368 and S9-S35, 1986.

Referenced on Wolfram|Alpha

Breeder

Cite this as:

Weisstein, Eric W. "Breeder." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/Breeder.html

Subject classifications